User:Z5015686: Difference between revisions

From Embryology
No edit summary
Line 109: Line 109:
'''Identify a known genetic mutation that is associated with cleft lip or palate:'''
'''Identify a known genetic mutation that is associated with cleft lip or palate:'''
Mutations in the Interferon Regulatory Factor 6 (IRF6) protein-coding gene (located on chromosome 1) account for the majority of cases of Van der Woude syndrome (VDWS), an autosomal dominant genetic disorder, which has been found to be associated with both cleft lip and cleft palate.  
Mutations in the Interferon Regulatory Factor 6 (IRF6) protein-coding gene (located on chromosome 1) account for the majority of cases of Van der Woude syndrome (VDWS), an autosomal dominant genetic disorder, which has been found to be associated with both cleft lip and cleft palate.  


'''Identify a recent research article on this gene:'''
'''Identify a recent research article on this gene:'''
<pubmed>PMC23029012</pubmed>
<pubmed>23029012</pubmed>


'''How does this mutation affect developmental signaling in normal development:'''
'''How does this mutation affect developmental signaling in normal development:'''
For the most part the underlying mechanism behind the mutation of the IRF6 gene and the development of cleft lip and palate is largely unknown. However, animal studies involving Irf6 mutant mice have offered an explanation to why this gene could contribute to the development of these abnormalities. These mice presented with hyper-proliferative epidermis failing to undergo terminal differentiation, leading to epithelial adhesions that are able to occlude the oral cavity. IRF6 is also thought to be involved in keratinocyte proliferation and differentiation as well as the formation of the oral periderm. <ref><pubmed>21331089</pubmed> [https://www.ncbi.nlm.nih.gov/pubmed/21331089]</ref> Recent research suggests that IRF6 gene interacts with other genes, specifically the Transforming Growth Factor Alpha (TGFA) gene (involved in activating a signalling pathway responsible for cell proliferation, differentiation and development) and may account for up to 10% of cleft lip and cleft palate cases. Interestingly, IRFA knockout mice didn’t express Tgfa in tissues in the palate.  
For the most part the underlying mechanism behind the mutation of the IRF6 gene and the development of cleft lip and palate is largely unknown. However, animal studies involving Irf6 mutant mice have offered an explanation to why this gene could contribute to the development of these abnormalities. These mice presented with hyper-proliferative epidermis failing to undergo terminal differentiation, leading to epithelial adhesions that are able to occlude the oral cavity. IRF6 is also thought to be involved in keratinocyte proliferation and differentiation as well as the formation of the oral periderm. <ref><pubmed>21331089</pubmed> [https://www.ncbi.nlm.nih.gov/pubmed/21331089]</ref> Recent research suggests that IRF6 gene interacts with other genes, specifically the Transforming Growth Factor Alpha (TGFA) gene (involved in activating a signalling pathway responsible for cell proliferation, differentiation and development) and may account for up to 10% of cleft lip and cleft palate cases. Interestingly, IRFA knockout mice didn’t express Tgfa in tissues in the palate.  
<ref><pubmed>23029012</pubmed> [http://www.ncbi.nlm.nih.gov/pubmed/23029012]</ref>
<ref><pubmed>23029012</pubmed> [http://www.ncbi.nlm.nih.gov/pubmed/23029012]</ref>
In summary it is thought that mutations in the IRF6 gene are thought to affect developmental signalling directly or through associations with other genes, however more research is required.  
In summary it is thought that mutations in the IRF6 gene are thought to affect developmental signalling directly or through associations with other genes, however more research is required.
 


==References==
==References==

Revision as of 00:54, 15 September 2016

Student Information (expand to read)  
Individual Assessments
Mark Hill.jpg

Please leave this template on top of your student page as I will add your assessment items here.

Beginning your online work - Working Online in this course

  1. Make your own page.
    1. Log-in to the embryology website using your student ID and Zpass.
    2. Click your student number (shown in red at the top right of the screen following log-in)
    3. Create page using the tab at the top of the page, and save.
  2. Add the following to the top of your page exactly as shown - {{ANAT2341Student2016}}
  3. How would you identify your Type in a group and add to your page.
  4. What was the most interesting thing you learnt in the fertilisation lecture?


If you have done the above correctly your ZID should be blue and not red on this page link - ANAT2341 2016 Students.


Here is the example page I made in Lab 1 Student Page. With a few more explanatory notes.

Click here to email Dr Mark Hill

Editing Links: Editing Basics | Images | Tables | Referencing | Journal Searches | Copyright | Font Colours | Virtual Slide Permalink | My Preferences | One Page Wiki Card | Printing | Movies | Language Translation | Student Movies | Using OpenOffice | Internet Browsers | Moodle | Navigation/Contribution | Term Link | Short URLs | 2018 Test Student
Lab 1 Assessment - Researching a Topic
In the lab I showed you how to find the PubMed reference database and search it using a topic word. Lab 1 assessment will be for you to use this to find a research reference on "fertilization" and write a brief summary of the main finding of the paper.
  1. Add a new Sub-heading "Lab 1 Assessment" (without the quotes).
  2. Search the database for a reference on "fertilisation" published in the last 5 years.
    1. It must be a research article not a Review.
    2. The full paper must be available online, not just the abstract.
  3. Add a link to this reference using its PMID using this code <pubmed>XXXXX</pubmed> replacing the Xs with just the PMID number (no text).
  4. Under the reference write a short summary of the papers main findings.
    1. Only 1-2 paragraphs.
    2. Must not be a copy of the paper abstract.
  5. Save and you are done.

PubMed logo.gif

Lab 2 Assessment - Uploading an Image
  1. Upload a research image using the guide information below. The image uploaded for your individual assessment can relate to your project or from fertilisation to week 3 of development (upload only a single image).
  2. Add that image to your own individual page (see Images) including an image title and its reference link.
  3. No two students should upload the same image, check new images before you upload.
  4. No student can delete an image once uploaded, please contact me by email with the image address and I will delete (with no penalty, just glad to help out).


2016 Group Project Topic - Signaling in Development

OK you are now in a group

  1. Go to the blank group page and add a topic that interests you along with your student signature.
  2. No two groups can do the same topic, but at this stage the final topic has not yet been decided (next week).

Initially the topic can be as specific or as broad as you want.


Chicken embryo E-cad and P-cad gastrulation.png

Chicken embryo E-cad and P-cad gastrulation[1]

References

  1. <pubmed>27097030</pubmed>
Lab 4 Assessment - GIT Quiz

ANAT2341 Quiz Example | Category:Quiz | ANAT2341 Student 2015 Quiz Questions |

Design 4 quiz questions based upon gastrointestinal tract. Add the quiz to your own page under Lab 4 assessment and provide a sub-sub-heading on the topic of the quiz.

An example is shown below (open this page in view code or edit mode). Note that it is not just how you ask the question, but also how you explain the correct answer.

Lab 5 Assessment - Course Review
Complete the course review questionnaire and add the fact you have completed to your student page.
Lab 6 Assessment - Cleft Lip and Palate
  1. Identify a known genetic mutation that is associated with cleft lip or palate.
  2. Identify a recent research article on this gene.
  3. How does this mutation affect developmental signalling in normal development.
Lab 7 Assessment - Muscular Dystrophy
  1. What is/are the dystrophin mutation(s)?
  2. What is the function of dystrophin?
  3. What other tissues/organs are affected by this disorder?
  4. What therapies exist for DMD?
  5. What animal models are available for muscular dystrophy?
Lab 8 Assessment - Quiz
A brief quiz was held in the practical class on urogenital development.
Lab 9 Assessment - Peer Assessment
  • This will form part of your individual assessment for the course.
  • Each student should now look at each of the other Group projects in the class.
  • Next prepare a critical assessment (should include both positive and negative issues) of each project using the project group assessment criteria.
  • This assessment should be pasted without signature on the top of the specific project's discussion page. (minimum length 3-5 paragraphs/project)
  • This critical assessment should also be pasted on your own student page.
  • Each student should therefore have 5 separate reports pasted on their own page for this assessment item.
  • Length, quality and accuracy of your reports will be part of the overall mark for this assessment.
    • there will be a greater loading on this than simple question assessments.
Lab 10 Assessment - Stem Cells
As part of the assessment for this course, you will give a 15 minutes journal club presentation in Lab 10. For this you will in your current student group discuss a recent (published after 2011) original research article (not a review!) on stem cell biology or technology.
Lab 10 - Stem Cell Presentations 2016
Group Mark Assessor General Comments

Group 1: 15/20

Group 2: 19/20

Group 3: 20/20

Group 4: 19/20

Group 5: 16/20

Group 6: 16/20

The students put great effort in their presentation and we heard a nice variety of studies in stem cell biology and regenerative medicine today. The interaction after the presentation was great.

As general feedback I would like to advise students to:

  • Never discuss M&M as a separate section in journal clubs. I gave this advice prior to the lab, but still most groups did talk through the M&M section.
  • Do not use your slides as cheat sheets, avoid text on slides, know what messages you need to get across, use images to illustrate these
  • Engage with your slides. Talk through them. Point at panels. Gauge your audience’s understanding by making eye contact with them
  • Avoid using abbreviations. Most people do not readily understand these and will lose track
Lab 11 Assessment - Heart Development
Read the following recent review article on heart repair and from the reference list identify a cited research article and write a brief summary of the paper's main findings. Then describe how the original research result was used in the review article.

<pubmed>26932668</pubmed>Development

ANAT2341Lectures - Textbook chapters  
Lecture (Timetable) Textbook - The Developing Human Textbook - Larsen's Human Embryology
Embryology Introduction Introduction to the Developing Human
Fertilization First Week of Human Development Gametogenesis, Fertilization, and First Week
Week 1 and 2 Second Week of Human Development Second Week: Becoming Bilaminar and Fully Implanting
Week 3 Third Week of Human Development Third Week: Becoming Trilaminar and Establishing Body Axes
Mesoderm Fourth to Eighth Weeks of Human Development Fourth Week: Forming the Embryo
Ectoderm Nervous System Development of the Central Nervous System
Early Vascular Cardiovascular System Development of the Vasculature
Placenta Placenta and Fetal Membranes Development of the Vasculature
Endoderm - GIT Alimentary System Development of the Gastrointestinal Tract
Respiratory Respiratory System Development of the Respiratory System and Body Cavities
Head Pharyngeal Apparatus, Face, and Neck Development of the Pharyngeal Apparatus and Face
Neural Crest Nervous System Development of the Peripheral Nervous System
Musculoskeletal Muscular System Development of the Musculoskeletal System
Limb Development of Limbs Development of the Limbs
Renal Urogenital System Development of the Urinary System
Genital Urogenital System Development of the Urinary System
Stem Cells
Integumentary Integumentary System Development of the Skin and Its Derivatives
Endocrine Covered through various chapters (see also alternate text), read head and neck, neural crest and renal chapters.
Endocrinology Textbook - Chapter Titles  
Nussey S. and Whitehead S. Endocrinology: An Integrated Approach (2001) Oxford: BIOS Scientific Publishers; ISBN-10: 1-85996-252-1.

Full Table of Contents

Heart Cardiovascular System Development of the Heart
Sensory Development of Eyes and Ears Development of the Eyes
Fetal Fetal Period Fetal Development and the Fetus as Patient
Birth and Revision
Additional Textbook Content - The following concepts also form part of the theory material covered throughout the course.
  1. Principles and Mechanisms of Morphogenesis and Dysmorphogenesis
  2. Common Signaling Pathways Used During Development
  3. Human Birth Defect
ANAT2341 Course Timetable  
Week (Mon) Lecture 1 (Mon 1-2pm) Lecture 2 (Tue 3-4pm) Practical (Fri 1-3pm)
Week 2 (1 Aug) Introduction Fertilization Lab 1
Week 3 (8 Aug) Week 1 and 2 Week 3 Lab 2
Week 4 (15 Aug) Mesoderm Ectoderm Lab 3
Week 5 (22 Aug) Early Vascular Placenta Lab 4
Week 6 (29 Aug) Gastrointestinal Respiratory Lab 5
Week 7 (5 Sep) Head Neural Crest Lab 6
Week 8 (12 Sep) Musculoskeletal Limb Development Lab 7
Week 9 (19 Sep) Renal Genital Lab 8
Mid-semester break
Week 10 (3 Oct) Public Holiday Stem Cells Lab 9
Week 11 (10 Oct) Integumentary Endocrine Lab 10
Week 12 (17 Oct) Heart Sensory Lab 11
Week 13 (24 Oct) Fetal Birth and Revision Lab 12

ANAT2341 2016: Moodle page | ECHO360 | Textbooks | Students 2016 | Projects 2016


Lab Attendance

Z5015686 (talk) 14:34, 5 August 2016 (AEST)

Z5015686 (talk) 14:40, 12 August 2016 (AEST)

Z5015686 (talk) 13:15, 19 August 2016 (AEST)

Z5015686 (talk) 13:10, 26 August 2016 (AEST)

Z5015686 (talk) 13:07, 2 September 2016 (AEST)

Z5015686 (talk) 13:07, 9 September 2016 (AEST)

Lab 1 Assessment

<pubmed> PMC4770082 </pubmed>


Short Summary Of Findings

The results of this paper suggest that human oocyte developmental potential can be predicted by the quality and maturation of the oocyte prior to fertilisation, (at the 2PN, pronucleus phase). The experiential design outlined in the paper involved measuring the mechanical properties of mouse and human zygotes using minimally invasive technologies (such as micropipette aspiration) to determine which were most predictive of viability (viability was defined as embryos that would most likely survive to blastocyst stage of development.) The results showed that individual parameters had limited predictive power on viability, however when considered together there was a greater distinction between viable and non-viable embryos. Through the use of statistical analysis it was found that their method of classification to predict embryo blastocyst formation that was based on these mechanical properties had >90% precision, 95% specificity and 75% sensitivity. Mice received embryos that were predicted to be either viable or non-viable based on their mechanical properties, which positively correlated to the mice who later had live births. The experimenters then investigated firstly whether there was a correlation between the viable and non-viable embryos and their gene expression, and secondly how/why these mechanical parameters correlated with viability. Interestingly they found that non-viable embryos had a reduced/different expression of some genes that are important for processes including, but not limited to, regulating cell cycle, oocyte maturation, chromosome segregation, DNA repair and telomere maintenance, thus suggesting that zygote gene expression correlates with viability. They also found that non-viable oocytes might undergo suboptimal fertilisation. Some genes that were identified to be differentially expressed in viable and non-viable embryos are important for fertilisation, including some whose products are found on the oocyte plasma membrane and in its zona pellucida, where if expressed incorrectly could potentially inhibit sperm-egg binding. Additionally, a reduced expression for a gene coding for a sperm protein was identified in non-viable zygotes, as well as a receptor that is involved in initiating the calcium oscillations that leads to cortical granule release and zona-hardening (which assists in the prevention of polyspermy.) Therefore in conclusion, this research demonstrates a way to accurately predict embryo viability early on in development, at the pronucleus stage, suggesting that embryo developmental potential is determined pre-fertilisation. This research has relevant applications in embryo selection process in IVF clinics.


Mark Hill 18 August 2016 - You have added the citation correctly and written a good summary of the article's main findings. I guess the question is what provides the zygote viscoelastic properties and sperm gene expression? Assessment 5/5

Lab 2 Assessment

Rbm24a and rbm24b are expressed throughout somitogenesis.jpeg

Rbm24a and rbm24b are expressed throughout somitogenesis[1]


Mark Hill 29 August 2016 - All information Reference, Copyright and Student Image template correctly included with the file and referenced on your page here. Assessment 5/5

Lab 3 Assessment

Mark Hill 31 August 2016 - Lab 3 Assessment Quiz - Mesoderm and Ectoderm development.

Question 3 - brain vesicles

Assessment 4/5


Lab 4 Assessment

Gastrointestinal Quiz

1 True/False - Gastrulation, gut formation, is a process that occurs during early embryonic development (week 4), whereby the epiblast layer which derives three germ cell layers (ectoderm, mesoderm and endoderm) is divided into three distinct proportions (the foregut, midgut and hindgut) and through a series of rotations and conformational changes contributes to the formation of different GIT structures (including but not limited to, the liver, stomach, intestines, pancreas and spleen)

  True
  False

2 Which of the following germ layer components contribute to gastrointestinal development:

Endoderm
Somatic Mesoderm
Splanchnic Mesoderm
Ectoderm (Neural Crest)

3 Which of the following statements is incorrect:

  The intraembryonic coelom (lateral plate of the mesoderm) is responsible for the formation of the three major body cavities including the pericardial, pleural and peritoneal (where most of the GIT will eventually lie within)
  Each gastrointestinal tract division can be defined by the vascular artery supply to each, the Foregut by the celiac artery, the Midgut by the superior mesenteric artery and the Hindgut by the inferior mesenteric artery
  The buccopharyngeal and cloacal membrane degenerate at the same point in time during gastrointestinal development in a normal healthy embryo
  During embryonic development most of the gastrointestinal tract undergoes some degree of mechanical rotation

4 Which of the following statements regarding gastrointestinal abnormalities is most correct:

  The lumen abnormality of duplication, which is the incomplete recanalisation resulting in parallel lumens, is only found to occur in sites located within/surrounding the stomach region
  Intestinal malrotation displays no clinical symptoms until later childhood
  Intestinal Aganglionosis is a condition resulting from reduced migration of neural crest cells, (which are responsible for the development of the enteric nervous system and specifically gastric motility) is most commonly experienced higher up in the gastrointestinal tract (towards the oral cavity)
  Meckel's Diverticulum is the most common GIT abnormality, with an incidence rate of roughly 1-2% in a population


Lab 5 Assessment

Completed Course Feedback Questionnaire

Z5015686 (talk) 13:15, 9 September 2016 (AEST)

Lab 6 Assessment

Identify a known genetic mutation that is associated with cleft lip or palate: Mutations in the Interferon Regulatory Factor 6 (IRF6) protein-coding gene (located on chromosome 1) account for the majority of cases of Van der Woude syndrome (VDWS), an autosomal dominant genetic disorder, which has been found to be associated with both cleft lip and cleft palate.


Identify a recent research article on this gene: <pubmed>23029012</pubmed>

How does this mutation affect developmental signaling in normal development: For the most part the underlying mechanism behind the mutation of the IRF6 gene and the development of cleft lip and palate is largely unknown. However, animal studies involving Irf6 mutant mice have offered an explanation to why this gene could contribute to the development of these abnormalities. These mice presented with hyper-proliferative epidermis failing to undergo terminal differentiation, leading to epithelial adhesions that are able to occlude the oral cavity. IRF6 is also thought to be involved in keratinocyte proliferation and differentiation as well as the formation of the oral periderm. [2] Recent research suggests that IRF6 gene interacts with other genes, specifically the Transforming Growth Factor Alpha (TGFA) gene (involved in activating a signalling pathway responsible for cell proliferation, differentiation and development) and may account for up to 10% of cleft lip and cleft palate cases. Interestingly, IRFA knockout mice didn’t express Tgfa in tissues in the palate. [3] In summary it is thought that mutations in the IRF6 gene are thought to affect developmental signalling directly or through associations with other genes, however more research is required.

References

  1. <pubmed>25170925</pubmed> PLOSONE
  2. <pubmed>21331089</pubmed> [1]
  3. <pubmed>23029012</pubmed> [2]


fertilization PMID 27486480