User:Z3333038

From Embryology

Individual Assessments

Lab 1 Assessment

1. Identify the origin of In Vitro Fertilization and the 2010 nobel prize winner associated with this technique and add a correctly formatted link to the Nobel page.

The History of In Vitro Fertilisation

In vitro fertilisation (IVF) refers to the process of artificial fertilisation conducted ex vivo. The IVF technique was first described for non-human use. The earliest known research conducted was by Walter Heape from Cambridge University in the 1890s who reported the first known case of embryo transplantation in rabbits. In 1959, Dr. Min Chueh Chang published his work in Nature describing the first successful mammalian live birth (rabbits) after IVF therapy.

Eventually, the use of IVF for humans became a possibility and then a reality: in 1978, the first successful birth from IVF occurred in England. The success of this IVF birth is credited to Patrick Steptoe and Robert Edwards. In 2010, Edwards was awarded the Nobel Prize in Medicine for the development of human IVF therapy. Because of IVF, many couples have been given a chance to conceive. However, the history of IVF is still in the making with constant improvements in the technology being developed and applied.


2. Identify and add a PubMed reference link to a recent paper on fertilisation and describe its key findings (1-2 paragraphs).

Research in Fertilisation

In order for fusion between mammalian gametes to occur, a spermatozoon must first pass through the external layers surrounding the oocyte: the cumulus oophorus and the zona pellucida (ZP). It is believe that the acromosome reaction (AR) of the spermatozoa starts upon contact with the zona pellucida. Consequently, the cumulus cell layer is typically removed in studies of mouse sperm-oocyte interactions in order to facilitate fertilisation. The recent experiments of Jin et al. [1] sought to answer the question: "Where does the fertilising mouse spermatozoon begin the AR - in the cumulus [of the oocyte] or the zona pellucida?" Jin et al. [1] utilised fluorescence microscopy and transgenic mouse spermatozoa to conduct their investigation. Additionally, Jin et al. [1] used cumulus-free oocytes and cumulus-enclosed oocytes to study the role of the cumulus cells in fertilisation.

From the experiment, Jin et al. [1] found that most fertilising spermatozoa begin the AR before their first contact with the ZP. The significance of this finding was that the spermatozoa with intact acromosomes at the ZP seldom had the ability to penetrate through [1]. In contrast, spermatozoa which had already began the AR could easily penetrate the ZP. In regards to the role of the cumulus cells, it was found that cumulus-enclosed oocytes had a higher incidence of fertilisation compared to cumulus-free oocytes [1]. Moreover, cumulus-free oocytes had an increased incidence of in vitro fertilisation when incubated with other cumulus-enclosed cells; this finding suggests that cumulus cells harbour an important role in fertilisation [1]. However, it is notable that when cumulus-free oocytes were incubated in a cumulus-conditioned medium, no increase in fertilisation rate was noted[1]. Overall, two conclusions were made: firstly, that the AR is required by the spermatozoa prior to meeting the ZP for effective fertilisation[1]. Secondly, the cumulus oophorus confers benefit in increasing the chance of fertilisation[1].


References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 <pubmed>21383182</pubmed>

Lab 2 Assessment

1. Upload an image from a journal source relating to fertilization or the first 2 weeks of development as demonstrated in the practical class. Including in the image “Summary” window: An image name as a section heading, Any further description of what the image shows, A subsection labeled “Reference” and under this the original image source, appropriate reference and all copyright information and finally a template indicating that this is a student image.


2. Identify a protein associated with the implantation process, including a brief description of the protein's role (1-2 paragraphs).

Trophinin and Implantation

Trophinin is a membrane protein expressed in chorionic villi trophoblasts and in the maternal endometrium. In the early stages of pregnancy, trophinin is expressed strongly, along with tastin and bystin, which complex to mediate apical cell adhesion between the trophoblasts and the endometrial epithelial cells[1]. The time frame in which trophinin is expressed on the apical aspect of the endometrial cells coincides with the "implantation window"[2]. ; the period in which successful implantation is possible.

Lab Attendance

Lab 1 --Z3333038 11:49, 25 July 2012 (EST)

Lab 2 --Z3333038 10:05, 1 August 2012 (EST)

  1. <pubmed>14633596</pubmed>
  2. Cite error: Invalid <ref> tag; no text was provided for refs named PMID1463359