User:Z3332339

From Embryology

Welcome to the 2014 Embryology Course!

Links: Timetable | How to work online | One page Wiki Reference Card | Moodle
  • Each week the individual assessment questions will be displayed in the practical class pages and also added here.
  • Copy the assessment items to your own page and provide your answer.
  • Note - Some guest assessments may require completion of a worksheet that will be handed in in class with your student name and ID.
Individual Lab Assessment
  1. Lab 1 Assessment - Fertilization References
  2. Lab 2 Assessment - Uploading a Research Image
  3. Lab 3 Assessment - Researching your Project Sub-Heading
  4. Lab 4 Assessment - Cord Stem Cells
  5. Lab 5 Assessment - Abnormalities
  6. Lab 6 Assessment - Group Work (As announced in the lecture, No individual assessment item for this Lab, but I do expect you to have added content to your Group project by tomorrow's Lab.)
  7. Lab 7 Assessment - Endocrine+Teeth
  8. Lab 8 - Genital
  9. Lab 9 - Peer Assessment
  10. Lab 10 - Sensory Development
  11. Lab 11 - Stem Cells
  12. Lab 12 - Stem Cells Presentation (see preparation information)
Lab 12 - Stem Cell Presentation Assessment More Info
Group Comment Mark (10)
1/8
  • Lots of effort to place article in larger context
  • Slide lay out could be improved: lots of empty space, use larger images and talk through them
  • Results presentation a bit convoluted. Try to finish discussion of each experiment with a clear conclusion.
  • Repetition of information towards the end
  • One presenter had an unprofessional style of presentation
7
2
  • Good well-structured presentation
  • Good introduction
  • Methods discussed separately. Try to avoid this, and incorporate in discussion of experiments. Not sure if technology was understood very well.
7.5
3
  • Good well-structured presentation
  • Do not discuss methods as a separate section
  • Discussion of results not always very clear, comprehension?
7.5
4
  • Good well-structured presentation
  • Lots of text on slides, improve talking through images, blow up images
  • Good discussion
8.5
5
  • Good well-structured presentation, amount of text on slides relatively good.
  • Figures too small, discussion bit convoluted
  • Slightly over time
8.5
6
  • Good comprehension and well-structured presentation.
  • Too much text on slides
  • Experiments discussed in a lot of detail. Try to be more concise and discuss aim of experiment, approach, summarize results, conclude.
  • No talking through figures
8.5
7
  • Good well-structured presentation, great introduction, inclusion of images in presentation done relatively well.
  • Methods discussed separately. Incorporate methods in discussion of the experiments in the results section.
  • Try not to depend too much on text on your slides
  • Talking through results images was not very clear, comprehension?
7.5
More Useful Links
Student Projects
Group 1 Respiratory User:Z3330991 User:Z3332339 User:Z3333429 User:Z3372817
Group 2 Renal User:Z3463310 User:Z3465141 User:Z3465654 User:Z5030311
Group 3 Gastrointestinal User:Z3414515 User:Z3375627 User:Z3415141 User:Z3415242
Group 4 Genital User:Z3415716 User:Z3416697 User:Z3417458 User:Z3417753
Group 5 Integumentary User:Z3417796 User:Z3417843 User:Z3418340 User:Z3418488
Group 6 Endocrine User:Z3418702 User:Z3418837 User:Z3418698 User:Z3414648
Group 7 Neural User:Z3418981 User:Z3419587 User:Z3422484 User:Z3374116
Group 8 Musculoskeletal User:Z3418779 User:Z3418718 User:Z3418989
Student Projects Fetal Development of a specific System.
2014 Course: Week 2 Lecture 1 Lecture 2 Lab 1 | Week 3 Lecture 3 Lecture 4 Lab 2 | Week 4 Lecture 5 Lecture 6 Lab 3 | Week 5 Lecture 7 Lecture 8 Lab 4 | Week 6 Lecture 9 Lecture 10 Lab 5 | Week 7 Lecture 11 Lecture 12 Lab 6 | Week 8 Lecture 13 Lecture 14 Lab 7 | Week 9 Lecture 15 Lecture 16 Lab 8 | Week 10 Lecture 17 Lecture 18 Lab 9 | Week 11 Lecture 19 Lecture 20 Lab 10 | Week 12 Lecture 21 Lecture 22 Lab 11 | Week 13 Lecture 23 Lecture 24 Lab 12
Student Projects - Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | Group 6 | Group 7 | Group 8 | Moodle

Lab Attendance

Lab1 --Z3332339 (talk) 12:45, 6 August 2014 (EST)


http://www.ncbi.nlm.nih.gov/pubmed

PubMed


PMID25084016

<pubmed>25084016</pubmed>

Lab2 --Z3332339 (talk) 11:13, 13 August 2014 (EST)

Lab 3 --Z3332339 (talk) 11:12, 20 August 2014 (EST)

Lab Assessment 1

PMID24952156

A role for carbohydrate recognition in mammalian sperm-egg binding The primary focus of this article is on the first stage of fertilization, the binding of sperm to the specialised extracellular matrix of the egg, known as the zona pelluicda (ZP). The article suggests that the mammalian egg cell has a specialised carbohydrate site on the ZP for which the sperm recognises and binds to, enabling the fusion of genetic information between these two gametes.

The article explains how it was previously thought that data obtained from mouse sperm-egg interactions could explain human sperm-cell binding. However, recent research has suggested that the mouse model cannot be directly applied to the human model. Thus, this research paper investigates sperm-ZP interactions, using humans as the predominant model in finding the specific requirements for human sperm-egg binding which couldn’t previously be explained by the mouse model.

This article also uses a review that focused on the identification of the egg binding proteins associated with the binding of human sperm to the egg. Their findings concluded identifying the role for carbohydrate recognition on the ZP. These carbohydrates have specific sequences that cause restriction of ZP glycosylation in humans that could not otherwise be explained in mouse and pig models or are not the same for humans. This finding suggests that the regulation of glycosylation could be directly correlated with the degree of organismal complexity. Evidence favouring this concept would require the sequencing of ZP glycoproteins from other mammals at different levels of the evolutionary ladder, which could be are areas of future directions for this research.


PMID25044079

Examining the temperature of embryo culture in in vitro fertilization: a randomized controlled trial comparing traditional core temperature (37°C) to a more physiologic, cooler temperature (36°C)

The study undertaken in this article was to determine if better clinical outcomes of IVF resulted from embryo cultures in cooler temperatures (36 degrees) as oppose to the traditional core temperature of (37 degrees).

The method of investigation: retrieving eight or more oocytes from a female of 42 years of age, with infertile couples (n=52). These mature oocytes were divided into two groups to be cultured at different temperatures; one group at 36 degrees, the other at 37 degrees. The rate of development and expansion of blastocysts (volume), fertilization, aneuploidy and sustained implantation were the factors measured to in order to determine which of these conditions clinically improved the environment best for embryonic development. This could potentially change the temperatures of which in vitro fertilization takes places in clinics in the future.

However, the results concluded that IVF culture at 36 degrees does not improve the conditions for blastulation and pregnancy rates in human in IVF. Thus, maintaining the existing temperature or changing it to 26 degrees does not alter the effects or success of IVF.

Lab Assessment 2

Oocytes with Dark Zona Pelluica affect fertility

Oocytes with DZP demonstrate affect on fertility.png


Human mature oocytes with a normal (A) and dark (B) zona pelluicda. Oocytes with a DZP (dark zona pelluicda) have demonstrated a lower success of fertlization and implantation in clinical pregnancy rates in IVF/ICSI cycles. Patients with normal zona pellucida (NZP) were used as the control group.

Reference

<pubmed>24586757</pubmed>| PLoS One.

Figure 2. Human mature oocytes with a normal (A) and dark (B) zona pellucida.Scale bar (A, B): 100 µm. doi:10.1371/journal.pone.0089409.g002


Shi W, Xu B, Wu L-M, Jin R-T, Luan H-B, et al. (2014) Oocytes with a Dark Zona Pellucida Demonstrate Lower Fertilization, Implantation and Clinical Pregnancy Rates in IVF/ICSI Cycles. PLoS ONE 9(2): e89409. doi:10.1371/journal.pone.0089409


copyright

© 2014 Shi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Note - This image was originally uploaded as part of an undergraduate science student project and may contain inaccuracies in either description or acknowledgements. Students have been advised in writing concerning the reuse of content and may accidentally have misunderstood the original terms of use. If image reuse on this non-commercial educational site infringes your existing copyright, please contact the site editor for immediate removal.