The Works of Francis Balfour 2-2: Difference between revisions

From Embryology
mNo edit summary
Line 1: Line 1:
{{FosterSedgwick1885b header}}
{{FosterSedgwick1885b header}}
==Chapter II. The Maturation and Impregnation of the Ovum==
==Chapter II. The Maturation and Impregnation of the Ovum==
Maturation of the ovum and formation of the polar bodies.


IN the preceding chapter the changes in the ovum were described nearly up to the period when it became ripe, and ready to be impregnated. Preparatory to the act of impregnation there take place however a series of remarkable changes, which more especially concern the germinal vesicle.


The attention of a large number of investigators has recently been directed to these changes as well as to the phenomena of impregnation. The results of their investigations will be described in the present chapter ; but for an historical account of these investigations, as well as for a determination of the delicate questions of priority, the reader is referred to Fol's memoir (No. 87), and to a paper by the author (No. 81).


Maturation of the ovum and formation of the polar bodies.  
The nature of the changes which take place in the maturation of the ovum may perhaps be most conveniently displayed by following the history of a single ovum. For this purpose the eggs of Asterias glacialis, which have recently formed the subject of a series of beautiful researches by Fol (87), may be selected.


IN the preceding chapter the changes in the ovum were described
The ripe ovum (fig. 22), when detached from the ovary is formed of a granular vitellus enveloped in a mucilaginous coat,
nearly up to the period when it became ripe, and ready to be
impregnated. Preparatory to the act of impregnation there
take place however a series of remarkable changes, which more
especially concern the germinal vesicle.


The attention of a large number of investigators has recently been
directed to these changes as well
as to the phenomena of impregnation. The results of their investigations will be described in the
present chapter ; but for an historical account of these investigations,
as well as for a determination of
the delicate questions of priority,
the reader is referred to Fol's
memoir (No. 87), and to a paper
by the author (No. 81).


The nature of the changes
which take place in the
maturation of the ovum may
perhaps be most conveniently displayed by following the
history of a single ovum.
For this purpose the eggs of
Asterias glacialis, which have
recently formed the subject of a series of beautiful researches
by Fol (87), may be selected.


The ripe ovum (fig. 22), when detached from the ovary is
formed of a granular vitellus enveloped in a mucilaginous coat,


FIG. 11. RIPE OVUM OF ASTERIAS GLACIALIS ENVELOPED IN A MUCILAGINOUS ENVELOPE, AND CONTAINING AN ECCENTRIC GERMINAL VESICLE AND GERMINAL


SPOT (copied from Fol).




FIG. 11. RIPE OVUM OF ASTERIAS GLACIALIS ENVELOPED IN A MUCILAGINOUS
ENVELOPE, AND CONTAINING AN ECCENTRIC GERMINAL VESICLE AND GERMINAL


SPOT (copied from Fol).  
MATURATION OF THE OVUM.






MATURATION OF THE OVUM.
69






69
the zona radiata. It contains an eccentrically-situated germinal vesicle and a germinal spot. In the former is -present the usual protoplasmic reticulum. As soon as the ovum reaches the seawater the germinal vesicle commences to undergo a peculiar metamorphosis. It exhibits frequent changes of form, the reti






the zona radiata. It contains an eccentrically-situated germinal
FIG. 23. Two SUCCESSIVE STAGES IN THE GRADUAL METAMORPHOSIS OF THE
vesicle and a germinal spot. In the former is -present the usual
protoplasmic reticulum. As soon as the ovum reaches the seawater the germinal vesicle commences to undergo a peculiar
metamorphosis. It exhibits frequent changes of form, the reti


GERMINAL VESICLE AND SPOT OF THE OVUM OF ASTERIAS GLACIALIS IMMEDIATELY AFTER IT is LAID (copied from Fol).


culum vanishes, its membrane becomes gradually absorbed, its outline indented and indistinct, and finally its contents become to a certain extent confounded with the vitellus (fig. 23).


FIG. 23. Two SUCCESSIVE STAGES IN THE GRADUAL METAMORPHOSIS OF THE
The germinal spot .at the same time loses its clearness of outline and gradually disappears from view.


GERMINAL VESICLE AND SPOT OF THE OVUM OF ASTERIAS GLACIALIS IMMEDIATELY AFTER IT is LAID (copied from Fol).  
At this stage, and between it and the stage represented in fig. 26, the action of reagents brings to light certain appearances the nature of which is not yet fully cleared up for Asterias, which have been described somewhat differently by Fol for Ast. glacialis and Hertwig for Asteracanthion.


culum vanishes, its membrane becomes gradually absorbed, its
Fol finds immediately after the stage just described that a star is visible between the remains of the germinal vesicle and the surface of the egg, which is connected with an imperfectlyformed nuclear spindle extending towards the germinal vesicle 1 . At the end of the nuclear spindle may be seen the broken up fragments of the germinal spot.
outline indented and indistinct, and finally its contents become
to a certain extent confounded with the vitellus (fig. 23).  


The germinal spot .at the same time loses its clearness of outline and gradually disappears from view.
At a slightly later stage, in the place of the original germinal vesicle there may be observed in the fresh


At this stage, and between it and the stage represented in
1 By the term 'nuclear spindle' I refer to the peculiar form of a double striated cone assumed by the nucleus just before division, which is no doubt familiar to all my readers. I use the term star for the peculiar stellate figure usually visible at the poles of the nuclear spindle. For a further description of these parts the reader is referred to Chapter IV.
fig. 26, the action of reagents brings to light certain appearances
the nature of which is not yet fully cleared up for Asterias, which
have been described somewhat differently by Fol for Ast. glacialis
and Hertwig for Asteracanthion.  


Fol finds immediately after the stage
just described that a star is visible
between the remains of the germinal
vesicle and the surface of the egg,
which is connected with an imperfectlyformed nuclear spindle extending towards the germinal vesicle 1 . At the
end of the nuclear spindle may be seen
the broken up fragments of the germinal spot.


At a slightly later stage, in the
place of the original germinal vesicle
there may be observed in the fresh


1 By the term 'nuclear spindle' I refer to the peculiar form of a double striated cone
assumed by the nucleus just before division, which is no doubt familiar to all my
readers. I use the term star for the peculiar stellate figure usually visible at the poles
of the nuclear spindle. For a further description of these parts the reader is referred
to Chapter IV.


FIG. 24. OVUM OF ASTERIAS GLACIALIS, SHEWING THE CLEAR SPACES IN THE PLACE OF THE GERMINAL


VESICLE. FRESH PREPARATION (copied from Fol). .




FIG. 24. OVUM OF ASTERIAS GLACIALIS, SHEWING THE CLEAR SPACES
IN THE PLACE OF THE GERMINAL


VESICLE. FRESH PREPARATION (copied
GERMINAL VESICLE.
from Fol). .  






GERMINAL VESICLE.


ovum two clear spaces (fig. 24), one ovoid and nearer the surface, and the second more irregular in form and situated rather deeper in the vitellus. In the upper space parallel stride may be observed. By treatment with reagents the first clear space is found to be formed of a horizontally-placed spindle with two terminal stars, near which irregular remains of the germinal spot may be seen. Slightly later (fig. 25) there may be seen on the lower side of the spindle a somewhat irregular body, which may possibly be part of the remains of the germinal spot, though Fol holds that it is probably part of the membrane of the germinal vesicle. The lower clear space visible in the fresh ovum now contains a round body, fig. 25. Fol concludes that the spindle is formed out of part of the germinal vesicle and not from the germinal spot, while he sees in the round body present in the lower of the two clear spaces the metamorphosed germinal spot. He will not, however, assert that no fragment of the germinal spot enters into the formation of the spindle.


The following is Hertwig's (No. 92) account of the changes in the germinal vesicle in Asteracanthion. Shortly after the egg is laid the protoplasm on the side of the germinal vesicle towards the surface of the egg develops a prominence which presses


inwards the wall of the vesicle. At the same time the germinal spot develops a large vacuole, in the interior of which is a body consisting of nuclear substance, and formed of a firmer and more refractive material than the remainder of the germinal spot. In the prominence first mentioned as projecting inwards towards the germinal vesicle first one star, formed by radial striae of protoplasm, and then a second make their appearance ; while the germinal spot appears to have vanished, the outline of the germinal vesicle to have become indistinct, and its contents to have mingled with the surrounding protoplasm. Treatment with reagents demonstrates that in the process of disappearance of the germinal spot the nuclear mass in its vacuole forms a rod-like body, the free end of which is situated between the two stars which occupy the prominence indenting the germinal vesicle. At a later period granules may be seen at the end of the rod and finally the rod itself vanishes. After these -changes by the aid of reagents there may be demonstrated a spindle between the two stars, which Hertwig believes to grow in size as the last remnants of the germinal spot gradually vanish, and he maintains that the spindle is formed at the expense of the germinal spot. The stage with this spindle corresponds with fig. 25.


ovum two clear spaces (fig. 24), one ovoid and nearer the surface, and the
Several of Hertwig's figures closely correspond with those of Fol, and considering how conflicting is the evidence before us, it seems necessary
second more irregular in form and situated rather deeper in the vitellus. In
the upper space parallel stride may be observed. By treatment with reagents
the first clear space is found to be formed of a horizontally-placed spindle
with two terminal stars, near which irregular remains of the germinal spot
may be seen. Slightly later (fig. 25) there may be seen on the lower side of
the spindle a somewhat irregular body, which may possibly be part of the
remains of the germinal spot, though Fol holds that it is probably part of the
membrane of the germinal vesicle. The lower clear space visible in the
fresh ovum now contains a round body, fig. 25. Fol concludes that the
spindle is formed out of part of the
germinal vesicle and not from the  
germinal spot, while he sees in the
round body present in the lower of
the two clear spaces the metamorphosed germinal spot. He will not,
however, assert that no fragment of
the germinal spot enters into the formation of the spindle.


The following is Hertwig's (No.
92) account of the changes in the
germinal vesicle in Asteracanthion.
Shortly after the egg is laid the protoplasm on the side of the germinal
vesicle towards the surface of the egg
develops a prominence which presses


inwards the wall of the vesicle. At the same time the germinal spot
develops a large vacuole, in the interior of which is a body consisting of
nuclear substance, and formed of a firmer and more refractive material than
the remainder of the germinal spot. In the prominence first mentioned as
projecting inwards towards the germinal vesicle first one star, formed by
radial striae of protoplasm, and then a second make their appearance ; while
the germinal spot appears to have vanished, the outline of the germinal
vesicle to have become indistinct, and its contents to have mingled with the
surrounding protoplasm. Treatment with reagents demonstrates that in the
process of disappearance of the germinal spot the nuclear mass in its vacuole
forms a rod-like body, the free end of which is situated between the two stars
which occupy the prominence indenting the germinal vesicle. At a later
period granules may be seen at the end of the rod and finally the rod itself
vanishes. After these -changes by the aid of reagents there may be demonstrated a spindle between the two stars, which Hertwig believes to grow in
size as the last remnants of the germinal spot gradually vanish, and he
maintains that the spindle is formed at the expense of the germinal spot.
The stage with this spindle corresponds with fig. 25.


Several of Hertwig's figures closely correspond with those of Fol, and
FlG. 25. OVUM OF ASTERIAS GLACIALIS, AT THE SAME STAGE AS FIG. 24, TREATED WITH PICRIC ACID (copied
considering how conflicting is the evidence before us, it seems necessary


from Fol).




FlG. 25. OVUM OF ASTERIAS GLACIALIS, AT THE SAME STAGE AS FIG. 24,
TREATED WITH PICRIC ACID (copied


from Fol).  
MATURATION OF THE OVUM.






MATURATION OF THE OVUM.  
to leave open for Asterias the question as to what parts of the germinal vesicle are concerned in forming the first spindle.


A clearer view of the phenomena which take place at this stage has been obtained by Fol in the case of Heteropods (Pterotrachaea). In the ovum a few minutes after it has been laid the germinal vesicle becomes very pale, and two stars make their appearance round a clear substance near its poles. The nucleus itself is somewhat elongated, and commences to exhibit at its poles longitudinal striae, which gradually extend towards the centre at the expense of the nuclear reticulum, from a metamorphosis of which they are directly derived. When the striae of the two sides have nearly met, thickenings may be observed in the recticulum between them, which give rise, where the striae of the two sides unite, to the central thickenings of the fibres (nuclear plate). In this way a complete nuclear spindle is established 1 .


The important result of Fol's observations on Heteropods, which tallies also with what is found in Asterias, is that a spindle with two stars at its poles is formed from the metamorphosis of the germinal vesicle and surrounding protoplasm (fig. 25).


to leave open for Asterias the question as to what parts of the germinal
Polar cells. The spindle has up to this time been situated with its axis parallel to the surface of the egg, but in somewhat older specimens a vertical spindle is found, with one end projecting into a protoplasmic prominence which makes its appearance on the surface of the egg (fig. 26). Hertwig believes that the spindle simply travels towards the surface, and while doing so changes the direction of its axis. Fol asserts, however, that this is not the case, but that between the two phases of the spindle an intermediate one is found in which a spindle can no longer be seen in the egg, but its place is taken by a body with a dentated outline. He has not been able to arrive at a conclusion as to what meaning is to be attached to
vesicle are concerned in forming the first spindle.  


A clearer view of the phenomena which take place at this stage
has been obtained by Fol in the case of Heteropods (Pterotrachaea). In the ovum a few minutes after it has been laid the
germinal vesicle becomes very pale, and two stars make their
appearance round a clear substance near its poles. The nucleus
itself is somewhat elongated, and commences to exhibit at its
poles longitudinal striae, which gradually extend towards the
centre at the expense of the nuclear reticulum, from a metamorphosis of which they are directly derived. When the striae of the
two sides have nearly met, thickenings may be observed in the
recticulum between them, which give rise, where the striae of
the two sides unite, to the central thickenings of the fibres
(nuclear plate). In this way a complete nuclear spindle is
established 1 .


The important result of Fol's observations on Heteropods,
which tallies also with what is found in Asterias, is that a spindle
with two stars at its poles is formed from the metamorphosis of
the germinal vesicle and surrounding protoplasm (fig. 25).


Polar cells. The spindle has up to
this time been situated with its axis
parallel to the surface of the egg, but in
somewhat older specimens a vertical
spindle is found, with one end projecting
into a protoplasmic prominence which
makes its appearance on the surface of
the egg (fig. 26). Hertwig believes that
the spindle simply travels towards the
surface, and while doing so changes the
direction of its axis. Fol asserts, however, that this is not the case, but that
between the two phases of the spindle
an intermediate one is found in which a
spindle can no longer be seen in the egg, but its place is taken
by a body with a dentated outline. He has not been able to
arrive at a conclusion as to what meaning is to be attached to


Fig. 26. PORTION OF






Fig. 26. PORTION OF
OF THE DETACHMENT OF THE FIRST POLAR BODY AND THE WITHDRAWAL OF THE REMAINING PART OF THE SPINDLE WITHIN THE OVUM. PICRIC ACID PREPARATION


(copied from Fol).




OF THE DETACHMENT OF
THE FIRST POLAR BODY AND
THE WITHDRAWAL OF THE
REMAINING PART OF THE
SPINDLE WITHIN THE OVUM.
PICRIC ACID PREPARATION


(copied from Fol).  
For the further details on the nuclear spindle vide the next Chapter.






For the further details on the nuclear spindle vide the next Chapter.  
POLAR CELLS.






POLAR CELLS.


FIG. 27. PORTION OF THE OVUM OF ASTERIAS GLACIALIS, WITH THE FIRST POLAR CELL AS IT APPEARS WHEN LIVING (copied from Fol).






FIG. 27. PORTION OF THE OVUM
OF ASTERIAS GLACIALIS, WITH THE
FIRST POLAR CELL AS IT APPEARS
WHEN LIVING (copied from Fol).


this occurrence, which does not appear to take place in Heteropods.


In any case the spindle which projects into the prominence on the surface of the egg divides into two parts, one in the prominence and one in the egg (fig. 26). The prominence itself with the enclosed portion of the spindle becomes constricted off from the egg to form a body, well known to embryologists as the polar body or cell (fig. 27). Since more than one polar cell is formed, that which is the earliest to appear may be called the first polar cell.


The part of the spindle which remains in the egg becomes directly converted into a second spindle by the elongation of its fibres, without passing through a typical nuclear condition. A second polar cell next becomes formed in the same manner as the first (fig. 28), and the portion of the spindle remaining in the egg becomes converted into two or three clear vesicles (fig. 29), which soon unite to form a single nucleus (fig. 30). The new nucleus which is clearly derived from part of the original germinal vesicle is called the female pronucleus, for reasons which will appear in the sequel.


this occurrence, which does not appear to take place in Heteropods.  
The two polar cells appear to be situated between two membranes, the outer of which is very delicate, and only distinct where it covers the polar cells, while the inner one is thicker and becomes, after impregnation, more distinct, and then forms what Fol speaks of as the vitelline membrane. It is clear, as Hertwig has pointed out, that the polar bodies


In any case the spindle which
projects into the prominence on
the surface of the egg divides into
two parts, one in the prominence
and one in the egg (fig. 26). The
prominence itself with the enclosed
portion of the spindle becomes constricted off from the egg to form a
body, well known to embryologists
as the polar body or cell (fig. 27). Since more than one polar
cell is formed, that which is the earliest to appear may be called the first
polar cell.


The part of the spindle which remains in the egg becomes directly converted into a second spindle by the
elongation of its fibres, without passing through a typical nuclear condition. A second polar cell next becomes formed in the same manner as
the first (fig. 28), and the portion of
the spindle remaining in the egg becomes converted into two or three clear vesicles (fig. 29), which
soon unite to form a single nucleus (fig.
30). The new nucleus which is clearly
derived from part of the original germinal
vesicle is called the female pronucleus,
for reasons which will appear in the sequel.


The two polar cells appear to be situated between two membranes, the outer
FIG. 28. PORTION OF THE OVUM OF ASTERIAS GLACIALIS IMMEDIATELY AFTER THE FORMATION OF THE SECOND POLAR CELL. PICRIC ACID PREPARA
of which is very delicate, and only distinct where it covers the polar cells, while
the inner one is thicker and becomes,
after impregnation, more distinct, and
then forms what Fol speaks of as the
vitelline membrane. It is clear, as Hertwig has pointed out, that the polar bodies






FIG. 28. PORTION OF THE
FIG. 29. PORTION OF
OVUM OF ASTERIAS GLACIALIS
IMMEDIATELY AFTER THE FORMATION OF THE SECOND POLAR
CELL. PICRIC ACID PREPARA


THE OVUM OF ASTERIAS GLACIALIS AFTER THK FORMATION OF THE SF.COND POLAR CELL, SHEWING THE PART OF THE SPINDLE REMAINING IN THE OVUM BECOMING CONVERTED INTO TWO CLEAR VESICLES. PlCRIC ACID PREPARATION


(copied from Fol).


FIG. 29. PORTION OF


THE OVUM OF ASTERIAS
GLACIALIS AFTER THK FORMATION OF THE SF.COND
POLAR CELL, SHEWING THE
PART OF THE SPINDLE REMAINING IN THE OVUM BECOMING CONVERTED INTO
TWO CLEAR VESICLES. PlCRIC ACID PREPARATION


(copied from Fol).  
MATURATION OF THE OVUM.






MATURATION OF THE OVUM.
73






73
originate by a regular process of cell-division and have the value of cells.


A peculiar phenomenon makes its appearance in the eggs of Clepsine shortly after the formation of the polar cells, which has been spoken of by Whitman (No. 100) as the formation of the polar rings. The following is his description of the occurrence.


" Fifteen minutes after the elimination of the polar globules (i.e. cells) a ring-like depression or constriction appears in the yolk around the oral pole, and in this depression a transparent liquid substance (nuclear ?) is collected forming the first polar ring.... The same phenomena repeat themselves later at the aboral pole.... The rings concentrate to form two discs.... Before the first cleavage both discs plunge deep into the egg."


originate by a regular process of cell-division and have the value
The nature of these rings is at present quite obscure.
of cells.  


A peculiar phenomenon makes its appearance in the eggs of Clepsine
Considering how few ova have been adequately investigated with reference to the behaviour of the germinal vesicle, any general conclusions which may at present be formed are to be regarded as provisional.
shortly after the formation of the polar cells, which has been spoken of by
Whitman (No. 100) as the formation of the polar rings. The following is his
description of the occurrence.  


" Fifteen minutes after the elimination of the polar globules (i.e. cells) a
There is however abundant evidence that at the time of maturation of the egg the germinal vesicle undergoes peculiar changes, which are, in part at least, of a retrogressive character. These changes may begin considerably before the egg has reached the period of maturity, or may not take place till after it has been laid. They consist in an appearance of irregularity and obscurity in the outline of the germinal vesicle, the absorption of its membrane, the partial absorption of its contents in the yolk, the disappearance of the reticulum, and the breaking up and disappearance of the germinal spot. The exact fate of the single germinal spot, or the numerous spots where they are present, is still obscure.
ring-like depression or constriction appears in the yolk around the oral pole,  
and in this depression a transparent liquid substance (nuclear ?) is collected
forming the first polar ring.... The same phenomena repeat themselves
later at the aboral pole.... The rings concentrate to form two discs.... Before
the first cleavage both discs plunge deep into the egg."


The nature of these rings is at present quite obscure.
The retrogressive metamorphosis of the germinal vesicle is followed in a large number of instances by the conversion of what remains into a striated spindle similar in character to a nucleus previous to division^ This spindle travels to the surface of the ovum and undergoes division to form the polar cell or cells in the


Considering how few ova have
been adequately investigated with
reference to the behaviour of the
germinal vesicle, any general conclusions which may at present be
formed are to be regarded as provisional.


There is however abundant
evidence that at the time of maturation of the egg the germinal
vesicle undergoes peculiar changes,
which are, in part at least, of a
retrogressive character. These
changes may begin considerably
before the egg has reached the
period of maturity, or may not take place till after it has been
laid. They consist in an appearance of irregularity and obscurity
in the outline of the germinal vesicle, the absorption of its membrane, the partial absorption of its contents in the yolk, the disappearance of the reticulum, and the breaking up and disappearance of the germinal spot. The exact fate of the single germinal
spot, or the numerous spots where they are present, is still obscure.


The retrogressive metamorphosis of the germinal vesicle is
followed in a large number of instances by the conversion of what
remains into a striated spindle similar in character to a nucleus
previous to division^ This spindle travels to the surface of the
ovum and undergoes division to form the polar cell or cells in the


FIG. 30. OVUM OF ASTERIAS GLACIALIS WITH THE TWO POLAR


CELLS AND THE FEMALE PRONUCLEUS SURROUNDED BY RADIAL STRIDE, AS SEEN IN THE LIVING EGG (copied from


Fol).


FIG. 30. OVUM OF ASTERIAS
GLACIALIS WITH THE TWO POLAR


CELLS AND THE FEMALE PRONUCLEUS
SURROUNDED BY RADIAL STRIDE, AS
SEEN IN THE LIVING EGG (copied from


Fol).  
74 POLAR CELLS.






74 POLAR CELLS.  
manner above described. The part which remains in the egg forms eventually the female pronucleus.


The germinal vesicle has up to the present time only been observed to undergo the above series of changes in a certain number of instances, which, however, include examples from several divisions of the Ccelenterata, the Echinodermata, and the Mollusca, some of the Vermes [Turbellarians (Leptoplana], Nematodes, Hirudinea, Alciope, Sagitta], Ascidians, etc. It is very possible, not to say probable, that such changes are universal in the animal kingdom, but the present state of our knowledge does not justify us in saying so.


In the Craniata especially our knowledge of the formation of the polar bodies is very unsatisfactory. In Petromyzon Kupffer and Benecke have brought forward evidence to shew that one polar body is formed prior to the impregnation, and a second in connection with a peculiar prominence of protoplasm after impregnation. Part of the germinal vesicle remains in the egg as the female pronucleus. In the Sturgeon the germinal vesicle atrophies and breaks up before impregnation, and afterwards part is found as a granular mass on the surface of the egg, while part forms a female pronucleus.


manner above described. The part which remains in the egg
In Amphibia the observations of Hertwig (90) and Bambeke (77) tend to shew that after the germinal vesicle has assumed a superficial situation at the pigmented pole of the ovum its contents become intermingled with the yolk, and are in part extruded from the ovum as a granular mass after impregnation. Part of them remains in the ovum and forms a female pronucleus. Whether there is a proper division of the germinal vesicle as in typical cases is not known.
forms eventually the female pronucleus.  


The germinal vesicle has up to the present time only been
Oellacher (95) by a series of careful observations upon the egg of the trout, and subsequently of the bird, demonstrated that in the ovum while still in the ovary, the germinal vesicle underwent a kind of degeneration and eventually became ejected, in part at any rate. My own observations on Elasmobranchs, which require enlargement and confirmation, tend to shew that this part may be the membrane. Ed. van Beneden (78) has contributed some important observations on the rabbit. His account is as follows. As the ovum approaches maturity the germinal vesicle assumes an eccentric position, and fuses with the peripheral layer of the egg to constitute the cicatricular lens. The germinal spot next travels to the surface of the cicatricular lens and forms the nuclear disc: at the same time the membrane of the germinal vesicle vanishes, though it probably unites with the nuclear disc. The plasma of the nucleus then collects into a definite mass and forms the nucleoplasmic body. Finally the nuclear disc assumes an ellipsoidal form and becomes the nuclear body. Nothing is now left of the original germinal vesicle but the nuclear body and the nucleoplasmic body, both still situated within the ovum. In the next stage no trace of the germinal
observed to undergo the above series of changes in a certain
number of instances, which, however, include examples from
several divisions of the Ccelenterata, the Echinodermata, and the  
Mollusca, some of the Vermes [Turbellarians (Leptoplana],
Nematodes, Hirudinea, Alciope, Sagitta], Ascidians, etc. It is  
very possible, not to say probable, that such changes are universal in the animal kingdom, but the present state of our knowledge
does not justify us in saying so.


In the Craniata especially our knowledge of the formation of the polar
bodies is very unsatisfactory. In Petromyzon Kupffer and Benecke have
brought forward evidence to shew that one polar body is formed prior to
the impregnation, and a second in connection with a peculiar prominence
of protoplasm after impregnation. Part of the germinal vesicle remains in
the egg as the female pronucleus. In the Sturgeon the germinal vesicle
atrophies and breaks up before impregnation, and afterwards part is found as a
granular mass on the surface of the egg, while part forms a female pronucleus.


In Amphibia the observations of Hertwig (90) and Bambeke (77) tend to
shew that after the germinal vesicle has assumed a superficial situation at
the pigmented pole of the ovum its contents become intermingled with the
yolk, and are in part extruded from the ovum as a granular mass after
impregnation. Part of them remains in the ovum and forms a female
pronucleus. Whether there is a proper division of the germinal vesicle
as in typical cases is not known.


Oellacher (95) by a series of careful observations upon the egg of the trout,
MATURATION OF THE OVUM. 75
and subsequently of the bird, demonstrated that in the ovum while still in
the ovary, the germinal vesicle underwent a kind of degeneration and
eventually became ejected, in part at any rate. My own observations on
Elasmobranchs, which require enlargement and confirmation, tend to shew
that this part may be the membrane. Ed. van Beneden (78) has contributed
some important observations on the rabbit. His account is as follows. As
the ovum approaches maturity the germinal vesicle assumes an eccentric
position, and fuses with the peripheral layer of the egg to constitute the
cicatricular lens. The germinal spot next travels to the surface of the
cicatricular lens and forms the nuclear disc: at the same time the membrane
of the germinal vesicle vanishes, though it probably unites with the nuclear
disc. The plasma of the nucleus then collects into a definite mass and forms
the nucleoplasmic body. Finally the nuclear disc assumes an ellipsoidal
form and becomes the nuclear body. Nothing is now left of the original
germinal vesicle but the nuclear body and the nucleoplasmic body, both still
situated within the ovum. In the next stage no trace of the germinal


vesicle can be detected in the ovum, but outside it, close to the point where the modified remnants of the vesicle were previously situated, there is present a polar body which is composed of two parts, one of which stains deeply and resembles the nuclear body, and the other does not stain but is similar to the nucleoplasmic body. Van Beneden concludes that the parts of the polar body are the two ejected products of the germinal vesicle. We may be perhaps permitted to hold that further observations on this difficult object will demonstrate that part of the germinal vesicle remains in the ovum to form the female pronucleus.


With reference to invertebrate forms attention may be called to the observations of Biitschli (80). Although in Cucullanus a normal formation of the polar bodies takes place, yet in the Nematodes generally, Biitschli has been unable to find the spindle modification of the germinal vesicle, but states that the germinal vesicle undergoes degeneration, its outline becoming indistinct and the germinal spot vanishing. The position of the germinal vesicle continues to be marked by a clear space, which gradually approaches the surface of the egg. When it is in contact with the surface a small spherical body, the remnant of the germinal vesicle, comes into view, and eventually becomes ejected. The clear space subsequently disappears.


MATURATION OF THE OVUM. 75
In addition to the types just quoted, which may very probably turn out to be normal in the mode of formation of the polar bodies, there is a large number of types, including the whole of the Rotifera and Arthropoda with a few doubtful exceptions 1 , in which the polar cells cannot as yet be said to have been satisfactorily observed.


vesicle can be detected in the ovum, but outside it, close to the point where
The more important of the doubtful cases amongst the Rotifera and Arthropoda are the following.
the modified remnants of the vesicle were previously situated, there is
present a polar body which is composed of two parts, one of which stains
deeply and resembles the nuclear body, and the other does not stain but is
similar to the nucleoplasmic body. Van Beneden concludes that the parts of
the polar body are the two ejected products of the germinal vesicle. We may
be perhaps permitted to hold that further observations on this difficult object
will demonstrate that part of the germinal vesicle remains in the ovum to
form the female pronucleus.  


With reference to invertebrate forms attention may be called to the
Flemming (83) finds that in the summer and probably parthenogenetic eggs of Lacinularia socialis the germinal vesicle approaches the surface and becomes invisible, and that subsequently a slight indentation in the outline of the egg marks the point of its disappearance. In the hollow of the indentation Flemming believes a polar cell to be situated, though he has not definitely seen one.
observations of Biitschli (80). Although in Cucullanus a normal formation
of the polar bodies takes place, yet in the Nematodes generally, Biitschli has
been unable to find the spindle modification of the germinal vesicle, but
states that the germinal vesicle undergoes degeneration, its outline becoming indistinct and the germinal spot vanishing. The position of the  
germinal vesicle continues to be marked by a clear space, which gradually
approaches the surface of the egg. When it is in contact with the surface
a small spherical body, the remnant of the germinal vesicle, comes into view,
and eventually becomes ejected. The clear space subsequently disappears.  


In addition to the types just quoted, which may very probably turn out to be normal in the mode of formation of the
Hoek 2 believes that he has found a polar body in the ovum of Balanus balanoides, but his observations are not perfectly satisfactory.
polar bodies, there is a large number of types, including the
whole of the Rotifera and Arthropoda with a few doubtful
exceptions 1 , in which the polar cells cannot as yet be said to
have been satisfactorily observed.  


The more important of the doubtful cases amongst the Rotifera and Arthropoda are the following.  
1 The best instance of what appears like a polar cell in Arthropoda is a body recently found by Grobben (" Entwicklungsgeschichte d. Moina rectirostris." Claus' Arbeiten, Vol. II., Wien, 1879) near the surface of the protoplasm at the animal pole of the summer and parthenogenetic eggs of Moina rectirostris, one of the Cladocera. The body stains deeply with carmine, but differs from normal polar cells in not being separated from the ovum ; and its identification as a polar cell must remain doubtful till it has been shewn to originate from the germinal vesicle.


Flemming (83) finds that in the summer and probably parthenogenetic
2 "Zur -Entwicklung d. Entomostraken." Niederlandischer Archiv. f. Zoologie, Vol. in. p. 62.
eggs of Lacinularia socialis the germinal vesicle approaches the surface
and becomes invisible, and that subsequently a slight indentation in the
outline of the egg marks the point of its disappearance. In the hollow of
the indentation Flemming believes a polar cell to be situated, though he
has not definitely seen one.  


Hoek 2 believes that he has found a polar body in the ovum of Balanus
balanoides, but his observations are not perfectly satisfactory.


1 The best instance of what appears like a polar cell in Arthropoda is a body
recently found by Grobben (" Entwicklungsgeschichte d. Moina rectirostris." Claus'
Arbeiten, Vol. II., Wien, 1879) near the surface of the protoplasm at the animal pole
of the summer and parthenogenetic eggs of Moina rectirostris, one of the Cladocera.
The body stains deeply with carmine, but differs from normal polar cells in not being
separated from the ovum ; and its identification as a polar cell must remain doubtful
till it has been shewn to originate from the germinal vesicle.


2 "Zur -Entwicklung d. Entomostraken." Niederlandischer Archiv. f. Zoologie,
76 FUNCTION OF POLAR CELLS.
Vol. in. p. 62.  


Biitschli, who has expressly searched for the polar bodies in the ova of Rotifera, was unable to find any trace of them, though he found that as the egg became ripe the germinal vesicle became half its original size. In the parthenogenetic eggs of Aphis he also failed to find a trace of polar bodies, though the germinal vesicle, after the germinal spot had broken up into fragments, approached the surface and disappeared.


Whatever may be the eventual result of more extended investigation, it is clear that the formation of polar cells according to the type described above is a very constant occurrence. Its importance is increased by the discovery by Strasburger of the existence of an analogous process amongst plants. Two questions about it obviously present themselves for solution : (i) What are the conditions of its occurrence with reference to impregnation ? (2) What meaning has it in the development of the ovum or the embryo ?


76 FUNCTION OF POLAR CELLS.  
The answer to the first of these questions is not difficult to find. The formation of the polar bodies is independent of impregnation, and is the final act of the normal growth of the ovum. In a few types the polar cells are formed while the ovum is still in the ovary, as, for instance, in some species of Echini, Hydra, etc., but, according to our present knowledge, far more usually after the ovum has been laid. In some instances the budding-off of the polar cells precedes, and in other instances follows impregnation ; but there is no evidence to shew that in the latter cases the process is influenced by the contact with the male element. In Asterias, as has been shewn by O. Hertwig and Fol, the formation of the polar cells may indifferently either precede or follow impregnation a fact which affords a clear demonstration of the independence of the two occurrences.


Biitschli, who has expressly searched for the polar bodies in the ova of
To the second of the two questions it does not unfortunately seem possible at present to give an answer which can be regarded as satisfactory.
Rotifera, was unable to find any trace of them, though he found that as the
egg became ripe the germinal vesicle became half its original size. In the
parthenogenetic eggs of Aphis he also failed to find a trace of polar bodies,
though the germinal vesicle, after the germinal spot had broken up into
fragments, approached the surface and disappeared.  


Whatever may be the eventual result of more extended
The retrogressive changes in the membrane of the germinal vesicle which usher in the formation of the polar bodies may very probably be viewed as a prelude to a renewed activity of the contents of the vesicle ; and are perhaps rendered the more necessary from the thickness of the membrane which results from a protracted period of passive growth. This suggestion does not, however, help us to explain the formation of polar
investigation, it is clear that the formation of polar cells
according to the type described above is a very constant
occurrence. Its importance is increased by the discovery by
Strasburger of the existence of an analogous process amongst
plants. Two questions about it obviously present themselves
for solution : (i) What are the conditions of its occurrence with
reference to impregnation ? (2) What meaning has it in the  
development of the ovum or the embryo ?


The answer to the first of these questions is not difficult to
find. The formation of the polar bodies is independent of
impregnation, and is the final act of the normal growth of the
ovum. In a few types the polar cells are formed while the
ovum is still in the ovary, as, for instance, in some species of
Echini, Hydra, etc., but, according to our present knowledge, far
more usually after the ovum has been laid. In some instances
the budding-off of the polar cells precedes, and in other instances
follows impregnation ; but there is no evidence to shew that in
the latter cases the process is influenced by the contact with the
male element. In Asterias, as has been shewn by O. Hertwig
and Fol, the formation of the polar cells may indifferently either
precede or follow impregnation a fact which affords a clear
demonstration of the independence of the two occurrences.


To the second of the two questions it does not unfortunately
seem possible at present to give an answer which can be regarded as satisfactory.


The retrogressive changes in the membrane of the germinal
MATURATION OF THE OVUM.
vesicle which usher in the formation of the polar bodies may
very probably be viewed as a prelude to a renewed activity of
the contents of the vesicle ; and are perhaps rendered the more
necessary from the thickness of the membrane which results
from a protracted period of passive growth. This suggestion
does not, however, help us to explain the formation of polar






MATURATION OF THE OVUM.  
bodies by a process identical with cell-division. The ejection of part of the germinal vesicle in the formation of the polar cells may probably be paralleled by the ejection of part or the whole of the original nucleus which, if we may trust the beautiful researches of Butschli, takes place during conjugation in Infusoria as a preliminary to the formation of a fresh nucleus. This comparison is due to Butschli, and according to it the formation of the polar bodies would have to be regarded as assisting, in some as yet unknown way, the process of regeneration of the germinal vesicle. Views analogous to this are held by Strasburger and Hertwig, who regard the formation of the polar bodies in the light of a process of excretion or removal of useless material. Such hypotheses do not, unfortunately, carry us very far.


I would suggest that in the formation of the polar cells part of the constituents of the germinal vesicle, which are requisite for its functions as a complete and independent nucleus, is removed, to make room for the supply of the necessary parts to it again by the spermatic nucleus.


My view amounts to the following, viz. that after the formation of the polar cells the remainder of the germinal vesicle within the ovum (the female pronucleus) is incapable of further development without the addition of the nuclear part of the male element (spermatozoon), and that if polar cells were not formed parthenogenesis might normally occur. A strong support for this hypothesis would be afforded were it to be definitely established that a polar body is not formed in the Arthropoda and Rotifera ; since the normal occurrence of parthenogenesis is confined to these two groups. It is certainly a remarkable coincidence that they are the only two groups in which polar bodies have not so far been satisfactorily observed.


bodies by a process identical with cell-division. The ejection of
It is perhaps possible that the part removed in the formation of the polar cells is not absolutely essential ; and this seems at first sight to follow from the fact of parthenogenesis being possible in instances where impregnation is the normal occurrence. The genuineness of the observations on this head is too long a subject to enter into here 1 , but after admitting,
part of the germinal vesicle in the formation of the polar cells  
may probably be paralleled by the ejection of part or the whole
of the original nucleus which, if we may trust the beautiful
researches of Butschli, takes place during conjugation in Infusoria as a preliminary to the formation of a fresh nucleus.
This comparison is due to Butschli, and according to it the  
formation of the polar bodies would have to be regarded as
assisting, in some as yet unknown way, the process of regeneration of the germinal vesicle. Views analogous to this are held
by Strasburger and Hertwig, who regard the formation of the
polar bodies in the light of a process of excretion or removal of
useless material. Such hypotheses do not, unfortunately, carry
us very far.


I would suggest that in the formation of the polar cells part
1 The instances quoted by Siebold, Parthenogenesis d. Arthropoden, are not quite satisfactory. In Hensen's case, p. 234, impregnation would have been possible if we can suppose the spermatozoa to be capable of passing into the body-cavity through the
of the constituents of the germinal vesicle, which are requisite
for its functions as a complete and independent nucleus, is
removed, to make room for the supply of the necessary parts to
it again by the spermatic nucleus.


My view amounts to the following, viz. that after the formation of the polar cells the remainder of the germinal vesicle
within the ovum (the female pronucleus) is incapable of further
development without the addition of the nuclear part of the
male element (spermatozoon), and that if polar cells were not
formed parthenogenesis might normally occur. A strong support for this hypothesis would be afforded were it to be definitely
established that a polar body is not formed in the Arthropoda
and Rotifera ; since the normal occurrence of parthenogenesis
is confined to these two groups. It is certainly a remarkable
coincidence that they are the only two groups in which polar
bodies have not so far been satisfactorily observed.


It is perhaps possible that the part removed in the formation of the
polar cells is not absolutely essential ; and this seems at first sight to follow
from the fact of parthenogenesis being possible in instances where impregnation is the normal occurrence. The genuineness of the observations
on this head is too long a subject to enter into here 1 , but after admitting,


1 The instances quoted by Siebold, Parthenogenesis d. Arthropoden, are not quite
78 FUNCTION OF. POLAR CELLS.
satisfactory. In Hensen's case, p. 234, impregnation would have been possible if we
can suppose the spermatozoa to be capable of passing into the body-cavity through the


as we probably must, that there are genuine cases of such parthenogenesis, it cannot be taken for granted without more extended observation that the occurrence of development in these rare instances may not be due to the polar cells not having been formed as usual, and that when the polar cells are formed the development without impregnation is impossible.


Selenka found in the case of Purpura lapillus that no polar body was formed in the eggs which did not develop, but in the case of Neritina, Biitschli has found that this does not hold good.


78 FUNCTION OF. POLAR CELLS.  
The remarkable observations of Greeff (No. 88) on the parthenogenetic development of the eggs of Asterias rubens tell, however, very strongly against the above hypothesis. Greeff has found that under normal circumstances the eggs of this species of starfish will develop without impregnation in simple sea-water. The development is quite regular and normal, though much slower than in the case of impregnated eggs. It is not definitely stated that polar cells are formed, but there can be no doubt that this is implied. GreefPs account is so precise and circumstantial that it is not easy to believe that any error can have crept in ; but neither Hertwig nor Fol have been able to repeat his experiments, and we may be permitted to wait for further confirmation before absolutely accepting them.


as we probably must, that there are genuine cases of such parthenogenesis,
To the suggestion already made with reference to the function of the polar cells, I will venture to add the further one, that the function of forming polar cells has been acquired by the ovum for the express purpose of Preventing parthenogenesis.
it cannot be taken for granted without more extended observation that the  
occurrence of development in these rare instances may not be due to the  
polar cells not having been formed as usual, and that when the polar cells  
are formed the development without impregnation is impossible.  


Selenka found in the case of Purpura lapillus that no polar body was
The explanation given by Mr Darwin of the evil effects of self-fertilization, viz. the want of sufficient differentiation in the sexual elements 1 , would apply with far greater force to cases of parthenogenesis.
formed in the eggs which did not develop, but in the case of Neritina,
Biitschli has found that this does not hold good.  


The remarkable observations of Greeff (No. 88) on the parthenogenetic
In the production of fresh individuals, two circumstances are obviously favourable to the species, (i) That the maximum number possible of fresh individuals should be produced, (2) That the individuals should be as vigorous as possible. Sexual differentiation (even in hermaphrodites) is clearly very inimical to the production of the maximum number of individuals. There can be little doubt that the ovum is potentially capable of developing by itself into a fresh individual, and therefore, unless the absence of sexual differentiation was very injurious to the vigour of the progeny, parthenogenesis would most certainly be a very constant occurrence ; and, on the analogy of the arrangements in plants to prevent selffertilization, we might expect to find some contrivance both in animals and in
development of the eggs of Asterias rubens tell, however, very strongly
against the above hypothesis. Greeff has found that under normal
circumstances the eggs of this species of starfish will develop without
impregnation in simple sea-water. The development is quite regular and  
normal, though much slower than in the case of impregnated eggs. It is
not definitely stated that polar cells are formed, but there can be no doubt
that this is implied. GreefPs account is so precise and circumstantial that
it is not easy to believe that any error can have crept in ; but neither
Hertwig nor Fol have been able to repeat his experiments, and we may be
permitted to wait for further confirmation before absolutely accepting them.


To the suggestion already made with reference to the function of the  
open end of the uninjured oviduct ; and though Oellacher's instances are more valuable, yet sufficient care seems hardly to have been taken, especially when it is not certain for what length of time spermatozoa may be able to live in the oviduct. For Oellacher's precautions, vide Zeit. fur Wiss. Zool., Bd. xxii., p. 202. A better instance is that of a sow given by Bischoff, Ann. Sci. Nat., series 3, Vol. n., 1844. The unimpregnated eggs were found divided into segments, but the segments did not contain the usual nucleus, and were perhaps nothing else than the parts of an ovum in a state of disruption.
polar cells, I will venture to add the further one, that the function of  
forming polar cells has been acquired by the ovum for the express purpose of  
Preventing parthenogenesis.  


The explanation given by Mr Darwin of the evil effects of self-fertilization, viz. the want of sufficient differentiation in the sexual elements 1 ,
1 Darwin, Cross- and Self- Fertilization of Plants, p. 443.
would apply with far greater force to cases of parthenogenesis.  


In the production of fresh individuals, two circumstances are obviously
favourable to the species, (i) That the maximum number possible of fresh
individuals should be produced, (2) That the individuals should be as
vigorous as possible. Sexual differentiation (even in hermaphrodites)
is clearly very inimical to the production of the maximum number of
individuals. There can be little doubt that the ovum is potentially capable
of developing by itself into a fresh individual, and therefore, unless the
absence of sexual differentiation was very injurious to the vigour of the
progeny, parthenogenesis would most certainly be a very constant occurrence ; and, on the analogy of the arrangements in plants to prevent selffertilization, we might expect to find some contrivance both in animals and in


open end of the uninjured oviduct ; and though Oellacher's instances are more valuable,
yet sufficient care seems hardly to have been taken, especially when it is not certain
for what length of time spermatozoa may be able to live in the oviduct. For Oellacher's
precautions, vide Zeit. fur Wiss. Zool., Bd. xxii., p. 202. A better instance is that
of a sow given by Bischoff, Ann. Sci. Nat., series 3, Vol. n., 1844. The unimpregnated eggs were found divided into segments, but the segments did not contain the
usual nucleus, and were perhaps nothing else than the parts of an ovum in a state of
disruption.


1 Darwin, Cross- and Self- Fertilization of Plants, p. 443.  
MATURATION OF THE OVUM. 79


plants to prevent the ovum developing by itself without fertilization. If my view about the polar cells is correct, the formation of these bodies functions as such a contrivance.


Reproduction by budding or fission has probably arisen as a means of increasing the number of individuals produced, so that the co-existence of asexual with sexual reproduction is to be looked on as a kind of compromise for the loss of the power of rapid reproduction due to the absence of parthenogenesis. In the Arthropoda and Rotifera the place of budding has been taken by parthenogenesis, which may be a frequent, though not always a necessary occurrence, as in various Branchiopoda (Apus, Limnadia, etc.) and Lepidoptera (Psyche helix:, etc.); or a regular occurrence for the production of one sex, as in Bees, Wasps, Nematus, etc. ; or an occurrence confined to a certain stage in the cycle of development in which all the individuals reproduce their kind parthenogenetically, as in Aphis, Cecidomyia, Gall Insects (Neuroterus, etc.), Daphnia 1 .


MATURATION OF THE OVUM. 79
On my hypothesis the possibility of parthenogenesis, or at any rate its frequency, in Arthropoda and Rotifera is possibly due to the absence of polar cells. In the case of all animals, so far as is known to me, fertilization of the ovum occasionally occurs 2 , but there are instances in the vegetable kingdom where so-called parthenogenesis appears to be capable of recurring for an indefinite period. One of the best instances appears to be that of Ccelebogyne, an introduced exotic Euphorbiaceous plant which regularly produces fertile seeds although a male flower never appears. The recent researches of Strasburger have however shewn that in Ccelebogyne and other parthenogenetic flowering plants, embryos are formed by the budding and subsequent development of cells belonging to the ovule. This being the case, it is impossible to assert of these plants that they are really parthenogenetic, for the embryos contained in the seed of a flower which has certainly not been fertilized, may have been formed, not by the development of the ovum, but by budding from the surrounding tissue of the ovule.


plants to prevent the ovum developing by itself without fertilization. If
The above view with reference to the nature of the polar bodies is not to be regarded as forming more than an hypothesis.
my view about the polar cells is correct, the formation of these bodies
functions as such a contrivance.  


Reproduction by budding or fission has probably arisen as a means of  
Impregnation of the Ovum.
increasing the number of individuals produced, so that the co-existence of
asexual with sexual reproduction is to be looked on as a kind of compromise
for the loss of the power of rapid reproduction due to the absence of
parthenogenesis. In the Arthropoda and Rotifera the place of budding has
been taken by parthenogenesis, which may be a frequent, though not always
a necessary occurrence, as in various Branchiopoda (Apus, Limnadia, etc.)
and Lepidoptera (Psyche helix:, etc.); or a regular occurrence for the production of one sex, as in Bees, Wasps, Nematus, etc. ; or an occurrence
confined to a certain stage in the cycle of development in which all the
individuals reproduce their kind parthenogenetically, as in Aphis, Cecidomyia, Gall Insects (Neuroterus, etc.), Daphnia 1 .  


On my hypothesis the possibility of parthenogenesis, or at any rate its
A far greater amount of certainty has been attained as to the effects of impregnation than as to the changes of the germinal vesicle which precede this, and there appears, moreover, to be a greater uniformity in the series of resulting phenomena.
frequency, in Arthropoda and Rotifera is possibly due to the absence of polar
cells. In the case of all animals, so far as is known to me, fertilization of  
the ovum occasionally occurs 2 , but there are instances in the vegetable kingdom where so-called parthenogenesis appears to be capable of recurring for
an indefinite period. One of the best instances appears to be that of
Ccelebogyne, an introduced exotic Euphorbiaceous plant which regularly
produces fertile seeds although a male flower never appears. The recent
researches of Strasburger have however shewn that in Ccelebogyne and other
parthenogenetic flowering plants, embryos are formed by the budding and
subsequent development of cells belonging to the ovule. This being the
case, it is impossible to assert of these plants that they are really parthenogenetic, for the embryos contained in the seed of a flower which has
certainly not been fertilized, may have been formed, not by the development
of the ovum, but by budding from the surrounding tissue of the ovule.  


The above view with reference to the nature of the polar bodies is not
1 Mr J. A. Osborne has recently shewn (Nature, Sept. 4, 1879), that the eggs of a Beetle (Gastrophysa raphani) may occasionally develop, up to a certain point at any rate, without the male influence.
to be regarded as forming more than an hypothesis.  


Impregnation of the Ovum.  
2 Dicyema, which is an apparent exception, has not yet been certainly shewn to develop true ova. If its germs are true ova it forms an exception to the above rule.


A far greater amount of certainty has been attained as to the
effects of impregnation than as to the changes of the germinal
vesicle which precede this, and there appears, moreover, to be a
greater uniformity in the series of resulting phenomena.


1 Mr J. A. Osborne has recently shewn (Nature, Sept. 4, 1879), that the eggs of a
Beetle (Gastrophysa raphani) may occasionally develop, up to a certain point at any
rate, without the male influence.


2 Dicyema, which is an apparent exception, has not yet been certainly shewn to
IMPREGNATION OF THE OVUM.
develop true ova. If its germs are true ova it forms an exception to the above
rule.  






IMPREGNATION OF THE OVUM.  
It will be convenient again to take Asterias glacialis as the type. The part of the germinal vesicle which remains in the egg, after the formation of the second polar cell, becomes converted into a number of small vesicles (fig. 29), which aggregate






It will be convenient again to take Asterias glacialis as the
type. The part of the germinal vesicle which remains in the
egg, after the formation of the second polar cell, becomes converted into a number of small vesicles (fig. 29), which aggregate




B.


FIG. 31. SMALL PORTIONS OF THE OVUM OF ASTERIAS GLACIALIS. THE SPERMATOZOA ARE SHEWN ENVELOPED IN THE MUCILAGINOUS COAT. IN A. A PROMINENCE IS RISING FROM THE SURFACE OF THE EGG TOWARDS THE NEAREST


SPERMATOZOON; AND IN B. THE SPERMATOZOON AND PROMINENCE HAVE MET. (Copied from Fol.)


B.


FIG. 31. SMALL PORTIONS OF THE OVUM OF ASTERIAS GLACIALIS. THE SPERMATOZOA ARE SHEWN ENVELOPED IN THE MUCILAGINOUS COAT. IN A. A PROMINENCE IS RISING FROM THE SURFACE OF THE EGG TOWARDS THE NEAREST


SPERMATOZOON; AND IN B. THE SPERMATOZOON AND PROMINENCE HAVE MET.  
themselves into a single clear nucleus, which toward the centre of the egg and around which, as a centre, the protoplasm becomes radiately striated (fig. 30). This nucleus is known as the female pronucleus. By the action of reagents a nucleolus may be shewn in it. In Asterias glacialis the most favourable period for fecundation is about an hour after the formation of the female pronucleus. If at this time the spermatozoa are allowed to come in contact with the egg, their heads soon become enveloped in the investing mucilaginous coat. A prominence, pointing towards the nearest spermatozoon, now arises from the superficial layer of protoplasm of the egg, and grows till it comes in contact with the spermatozoon (fig. 31, A and B). Under normal circumstances the spermatozoon which meets the prominence is the only one concerned in the fertilization,
(Copied from Fol.)  






themselves into a single clear nucleus, which
gradually travels
toward the centre of the egg and around
which, as a centre, the protoplasm becomes
radiately striated (fig. 30). This nucleus is
known as the female pronucleus. By
the action of reagents a nucleolus may be
shewn in it. In Asterias glacialis the most
favourable period for fecundation is about an
hour after the formation of the female pronucleus. If at this time the spermatozoa are
allowed to come in contact with the egg,
their heads soon become enveloped in the
investing mucilaginous coat. A prominence,
pointing towards the nearest spermatozoon,
now arises from the superficial layer of protoplasm of the egg, and grows till it comes
in contact with the spermatozoon (fig. 31, A
and B). Under normal circumstances the
spermatozoon which meets the prominence is
the only one concerned in the fertilization,






gradually travels


1IG. 32. 1'OKTION OF THE OVUM OF ASTERIAS GLACIALIS AFTER THE ENTRANCE OF A SPERMATOZOON INTO THE OVUM, IT SHEWS THE PROMINENCE OF THE OVUM THROUGH WHICH THE SPERMATOZOON HAS ENTERED. A VITELLINEMEMBRANEW1TH A CRATER-LIKE OPENING HAS BECOME DISTINCTLY FORMED.


(Copied from Fol.)




1''IG. 32. 1'OKTION
OF THE OVUM OF ASTERIAS GLACIALIS AFTER THE ENTRANCE
OF A SPERMATOZOON
INTO THE OVUM, IT
SHEWS THE PROMINENCE OF THE OVUM
THROUGH WHICH THE
SPERMATOZOON HAS
ENTERED. A VITELLINEMEMBRANEW1TH
A CRATER-LIKE OPENING HAS BECOME DISTINCTLY FORMED.


(Copied from Fol.)
IMPREGNATION OF THE OVUM.






IMPREGNATION OF THE OVUM.
8l






8l
and it makes its way into the egg by passing through the prominence. The tail of the spermatozoon, no longer motile, remains visible for some time after the head has bored its way in, but its place is soon taken by a pale conical body, which is, however, probably in part a product of the metamorphosis of the tail itself (fig. 32). It eventually becomes absorbed into the body of the ovum.


At the moment of contact between the spermatozoon and the egg the outermost layer of the protoplasm of the latter raises itself as a distinct membrane, which separates from the egg and prevents the entrance of other spermatozoa. At the point where the spermatozoon entered a crater-like opening is left in the membrane, through which the metamorphosed tail of the spermatozoon may at first be seen projecting (fig. 32).


The head of the spermatozoon when in the egg forms a nucleus, for which the name male pronucleus may be conveniently adopted. It grows in size, probably by assimilating material from the ovum, and around it is formed a clear space free from yolk-spherules. Shortly after its formation the protoplasm in its neighbourhood assumes a radiate arrangement (fig. 33). At whatever point of the egg the spermatozoon may have entered, it gradually travels towards the female FlG . 33> QVUM OF ASTERIAS pronucleus. The latter, around GLACIALIS, WITH MALE AND FEMALE


and it makes its way into the egg by passing through the prominence. The tail of the spermatozoon, no longer motile, remains
PRONUCLEUS AND A RADIAL STRIA which the protoplasm no longer TION OF THE PROTOPLASM AROUND has a radiate arrangement, re- THE FORMER. (Copied from FoL) mains motionless till the rays of
visible for some time after the head has bored its way in, but its
place is soon taken by a pale conical body, which is, however,
probably in part a product of the metamorphosis of the tail
itself (fig. 32). It eventually becomes absorbed into the body of  
the ovum.


At the moment of contact between the spermatozoon and
the male pronucleus come in contact with it, after which its condition of repose is exchanged for one of activity, and it rapidly approaches the male pronucleus, apparently by means of its inherent amoeboid contractions, and eventually fuses with it (figs. 3436).
the egg the outermost layer of the protoplasm of the latter
raises itself as a distinct membrane, which separates from the
egg and prevents the entrance of other spermatozoa. At the
point where the spermatozoon entered a crater-like opening is
left in the membrane, through which the metamorphosed tail of
the spermatozoon may at first be seen projecting (fig. 32).  


The head of the spermatozoon when in the egg forms a
As the male pronucleus approaches the female the latter, according to Selenka, sends out protoplasmic processes which B. n. 6
nucleus, for which the name male  
pronucleus may be conveniently
adopted. It grows in size, probably by assimilating material
from the ovum, and around it is
formed a clear space free from
yolk-spherules. Shortly after its
formation the protoplasm in its
neighbourhood assumes a radiate
arrangement (fig. 33). At whatever point of the egg the spermatozoon may have entered, it gradually travels towards the female FlG . 33> QVUM OF ASTERIAS
pronucleus. The latter, around GLACIALIS, WITH MALE AND FEMALE


PRONUCLEUS AND A RADIAL STRIA
which the protoplasm no longer TION OF THE PROTOPLASM AROUND
has a radiate arrangement, re- THE FORMER. (Copied from FoL)
mains motionless till the rays of


the male pronucleus come in contact with it, after which its
condition of repose is exchanged for one of activity, and it
rapidly approaches the male pronucleus, apparently by means
of its inherent amoeboid contractions, and eventually fuses with
it (figs. 3436).


As the male pronucleus approaches the female the latter,
according to Selenka, sends out protoplasmic processes which
B. n. 6


82






82
MALE PRONUCLEUS.






MALE PRONUCLEUS.  
embrace the former. The actual fusion does not take place till after the pronuclei have been in contact for some time. While the two pronuclei are approaching one another the protoplasm of the egg exhibits amoeboid movements.


The product of the fusion of the two pronuclei forms the first segmentation nucleus (fig. 37), which soon, however, divides into the two nuclei of the two first segmentation spheres.


The phenomenon which has just been described consists essentially in the fusion of the male cell and the female cell. In this act the protoplasm of the two cells as well as their nuclei coalesce, since the whole spermatozoon which has been absorbed into the ovum is a cell of which the head is the nucleus.


embrace the former. The actual fusion does not take place till
It is clear that the ovum after fertilization is an entirely different body to the ovum prior to that act, and unless the use of the same term for the two conditions of the ovum had become very familiar, a special term, such as oosperm, for the ovum after its fusion with the spermatozoon, would be very convenient.
after the pronuclei have been in contact for some time. While
the two pronuclei are approaching one another the protoplasm
of the egg exhibits amoeboid movements.  


The product of the fusion of the two pronuclei forms the first
segmentation nucleus (fig. 37), which soon, however, divides into
the two nuclei of the two first segmentation spheres.


The phenomenon which has just been described consists
essentially in the fusion of the male cell and the female cell. In
this act the protoplasm of the two cells as well as their nuclei
coalesce, since the whole spermatozoon which has been absorbed
into the ovum is a cell of which the head is the nucleus.


It is clear that the ovum after fertilization is an entirely
different body to the ovum prior to that act, and unless the use
of the same term for the two conditions of the ovum had become
very familiar, a special term, such as oosperm, for the ovum
after its fusion with the spermatozoon, would be very convenient.






FIGS. 34, 35, AND 36. THREE SUCCESSIVE STAGES IN THE COALESCENCE OF THE MALE AND FEMALE PRONUCLEI IN ASTERIAS GLACIALIS. FROM THE LIVING OVUM. (Copied from Fol.)


Of the earlier observations on this subject there need perhaps only be cited one of E. van Beneden, on the rabbit's ovum, shewing the presence of two nuclei before the commencement of segmentation. Butschli was the earliest to state from observations on Rhabditis dolichura that the first segmentation nucleus arose from the fusion of two nuclei, and this was subsequently shewn with greater detail for Ascaris nigrovenosa, by Auerbach (76). Neither of these authors gave at the first the correct interpretation of their results. At a later period Butschli (80) arrived at the conclusion that in a large number of in- FIG. 37 OVUM OF ASTERIAS stances (Lymnaus, Nephelis, Cucullanus, GLACIALIS, AFTER THE COALESCENCE


f ' OF THE MALE AND FEMALE PRONU &c.), the nucleus in question was formed CLEI . (Copied from Fol.)


FIGS. 34, 35, AND 36. THREE SUCCESSIVE STAGES IN THE COALESCENCE OF THE
MALE AND FEMALE PRONUCLEI IN ASTERIAS GLACIALIS. FROM THE LIVING
OVUM. (Copied from Fol.)


Of the earlier observations on this subject there need perhaps only be
cited one of E. van Beneden, on the
rabbit's ovum, shewing the presence of
two nuclei before the commencement of
segmentation. Butschli was the earliest
to state from observations on Rhabditis
dolichura that the first segmentation
nucleus arose from the fusion of two
nuclei, and this was subsequently shewn
with greater detail for Ascaris nigrovenosa, by Auerbach (76). Neither of these
authors gave at the first the correct interpretation of their results. At a later
period Butschli (80) arrived at the conclusion that in a large number of in- FIG. 37 OVUM OF ASTERIAS
stances (Lymnaus, Nephelis, Cucullanus, GLACIALIS, AFTER THE COALESCENCE


f ' OF THE MALE AND FEMALE PRONU
&c.), the nucleus in question was formed CLEI . (Copied from Fol.)


IMPREGNATION OF THE OVUM. 83


by the fusion of two or more nuclei, and Strasburger at first made a similar statement for Phallusia, though he has since withdrawn it. Though Biitschli's statements depend, as it seems, upon a false interpretation of appearances, he nevertheless arrived at a correct view with reference to what occurs in impregnation. Van Beneden (78) described in the rabbit the formation of the original segmentation nucleus from two nuclei, one peripheral and the other central, and deduced from his observations that the 'peripheral nucleus was derived from the spermatic element. It was reserved for Oscar Hertwig (89) to describe in Echinus lividus the entrance of a spermatozoon into the egg and the formation from it of the male pronucleus.


The general fact that impregnation consists in the fusion of the spermatozoon and ovum has now been established for some forms in the majority of invertebrate groups (Arthropoda and Rotifera excepted). Amongst Vertebrata also it has been shewn by E. van Beneden that the first segmentation nucleus is formed by the coalescence of the male and female pronucleus. Calberla, and Kupffer and Benecke have demonstrated that a single spermatozoon enters at first the ovum of Petromyzon.


IMPREGNATION OF THE OVUM. 83
The contact of the spermatozoon with the egg-membrane causes in Petromyzon active movements of the protoplasm of the ovum, and a retreat of the protoplasm from the membrane.


by the fusion of two or more nuclei, and Strasburger at first made a  
In Amphibia the appearance of a peculiar pigmented streak extending inwards from the surface of the pigmented pole of the ovum,, and containing in a clear space at its inner extremity a nucleus, has been demonstrated as the result of impregnation by Bambeke (77) and Hertwig (90). There can be little doubt that this nucleus is the male pronucleus, and that the pigmented streak indicates its path inwards. Close to it Hertwig has shewn that another nucleus is to be found, the female pronucleus, and that eventually the two join together. In Amphibia the phenomena accompanying impregnation are clearly of the same nature as in the Invertebrata. A precisely similar series of phenomena to those in Amphibia has been shewn by Salensky to take place in the Sturgeon.
similar statement for Phallusia, though he has since withdrawn it. Though
Biitschli's statements depend, as it seems, upon a false interpretation of  
appearances, he nevertheless arrived at a correct view with reference to
what occurs in impregnation. Van Beneden (78) described in the rabbit
the formation of the original segmentation nucleus from two nuclei, one
peripheral and the other central, and deduced from his observations that  
the 'peripheral nucleus was derived from the spermatic element. It was
reserved for Oscar Hertwig (89) to describe in Echinus lividus the entrance of a spermatozoon into the egg and the formation from it of the  
male pronucleus.  


The general fact that impregnation consists in the fusion
Although there is a general agreement between the most recent observers, Hertwig, Fol, Selenka, Strasburger, c., as to the main facts connected with the entrance of one spermatozoon into the egg, the formation of the male pronucleus, and its fusion with the female pronucleus, there still exist differences of detail in the different descriptions, which partly, no doubt,
of the spermatozoon and ovum has now been established for
some forms in the majority of invertebrate groups (Arthropoda
and Rotifera excepted). Amongst Vertebrata also it has been
shewn by E. van Beneden that the first segmentation nucleus is
formed by the coalescence of the male and female pronucleus.
Calberla, and Kupffer and Benecke have demonstrated that a
single spermatozoon enters at first the ovum of Petromyzon.


The contact of the spermatozoon with the egg-membrane causes in Petromyzon active movements of the protoplasm of the ovum, and a retreat
62
of the protoplasm from the membrane.


In Amphibia the appearance of a peculiar pigmented streak
extending inwards from the surface of the pigmented pole of the
ovum,, and containing in a clear space at its inner extremity a
nucleus, has been demonstrated as the result of impregnation by
Bambeke (77) and Hertwig (90). There can be little doubt that
this nucleus is the male pronucleus, and that the pigmented
streak indicates its path inwards. Close to it Hertwig has
shewn that another nucleus is to be found, the female pronucleus,
and that eventually the two join together. In Amphibia the
phenomena accompanying impregnation are clearly of the same
nature as in the Invertebrata. A precisely similar series of
phenomena to those in Amphibia has been shewn by Salensky
to take place in the Sturgeon.


Although there is a general agreement between the most recent observers,
Hertwig, Fol, Selenka, Strasburger, c., as to the main facts connected
with the entrance of one spermatozoon into the egg, the formation of the
male pronucleus, and its fusion with the female pronucleus, there still exist
differences of detail in the different descriptions, which partly, no doubt,


62
84 MALE PRONUCLEUS.






84 MALE PRONUCLEUS.  
depend upon the difficulties of observation, but partly also upon the observations not having all been made upon the same species. Hertwig does not enter into details with reference to the actual entrance of the spermatozoon into the egg, but in his latest paper points out that considerable differences may be observed in the occurrences which succeed impregnation, according to the relative period at which this takes place. When, in Asterias, the impregnation is effected about an hour after the egg is laid, and previously to the formation of the polar cells, the male pronucleus appears at first to exert but little influence on the protoplasm, but after the formation of the second polar cell, the radial striae around it become very marked, and the pronucleus rapidly grows in size. When it finally unites with the female pronucleus it is equal in size to the latter. In the case when the impregnation is deferred for four hours the male pronucleus never becomes so large as the female pronucleus. With reference to the effect of the time at which impregnation takes place, Asterias would seem to serve as a type. Thus in Hirudinea, Mollusca, and Nematoidea impregnation normally takes place before the formation of the polar bodies is completed, and the male pronucleus is accordingly as large as the female. In Echinus, on the other hand, where the polar bodies are formed in the ovary, the male pronucleus is always small.


Selenka, who has investigated the formation of the male pronucleus in Toxopneustes variegatus, differs in certain points from Fol. He finds that usually, though not always, a single spermatozoon enters the egg, and that though the entrance may be effected at any part of the surface it generally occurs at the point marked by a small prominence where the polar cells are formed. The spermatozoon first makes its way through the mucous envelope of the egg, within which it swims about, and then bores with its head into the polar prominence.


One important point has been so far only indirectly alluded to, viz. the number of spermatozoa required to effect impregnation.


depend upon the difficulties of observation, but partly also upon the observations not having all been made upon the same species. Hertwig does not
The concurrent testimony of almost all observers tends to shew that one only is required for this purpose. But the number of cases tested is too small to admit of satisfactory generalization.
enter into details with reference to the actual entrance of the spermatozoon
into the egg, but in his latest paper points out that considerable differences
may be observed in the occurrences which succeed impregnation, according
to the relative period at which this takes place. When, in Asterias, the  
impregnation is effected about an hour after the egg is laid, and previously
to the formation of the polar cells, the male pronucleus appears at first to
exert but little influence on the protoplasm, but after the formation of the
second polar cell, the radial striae around it become very marked, and the
pronucleus rapidly grows in size. When it finally unites with the female
pronucleus it is equal in size to the latter. In the case when the impregnation is deferred for four hours the male pronucleus never becomes so large
as the female pronucleus. With reference to the effect of the time at
which impregnation takes place, Asterias would seem to serve as a type.
Thus in Hirudinea, Mollusca, and Nematoidea impregnation normally takes
place before the formation of the polar bodies is completed, and the male
pronucleus is accordingly as large as the female. In Echinus, on the other
hand, where the polar bodies are formed in the ovary, the male pronucleus
is always small.  


Selenka, who has investigated the formation of the male pronucleus in
Both Hertwig and Fol have made observations on the result of the entrance into the egg of several spermatozoa. Fol finds that when the impregnation has been too long delayed the vitelline membrane is formed with comparative slowness, and several spermatozoa are thus enabled to penetrate. Each spermatozoon forms a separate pronucleus with a surrounding star ; and several male pronuclei usually fuse with the female pronucleus. Each male pronucleus appears to exercise a repulsive
Toxopneustes variegatus, differs in certain points from Fol. He finds that  
usually, though not always, a single spermatozoon enters the egg, and that
though the entrance may be effected at any part of the surface it generally
occurs at the point marked by a small prominence where the polar cells
are formed. The spermatozoon first makes its way through the mucous
envelope of the egg, within which it swims about, and then bores with its
head into the polar prominence.  


One important point has been so far only indirectly alluded
to, viz. the number of spermatozoa required to effect impregnation.


The concurrent testimony of almost all observers tends to
shew that one only is required for this purpose. But the
number of cases tested is too small to admit of satisfactory
generalization.


Both Hertwig and Fol have made observations on the result
IMPREGNATION OF THE OVUM. 85
of the entrance into the egg of several spermatozoa. Fol finds
that when the impregnation has been too long delayed the
vitelline membrane is formed with comparative slowness, and
several spermatozoa are thus enabled to penetrate. Each spermatozoon forms a separate pronucleus with a surrounding star ;
and several male pronuclei usually fuse with the female pronucleus. Each male pronucleus appears to exercise a repulsive


influence on other male pronuclei, but to be attracted by the female pronucleus. When there are several male pronuclei the segmentation is irregular and the resulting larva a monstrosity. These statements of Fol and Hertwig are up to a certain point in contradiction with the more recent results of Selenka. In Toxopneustes variegatus Selenka finds that though impregnation is usually effected by a single spermatozoon yet several may be concerned in the act. The development continues, however, to be normal up to the gastrula stage, at any rate, if three or even four spermatozoa enter the egg almost simultaneously. Under such circumstances each spermatozoon forms a separate pronucleus and star. Selenka is of opinion (apparently rather on a priori grounds than as a result of direct observation) that normal development cannot occur when more than one male pronucleus fuses with the female pronucleus ; and holds that, where he has observed such normal development after the entrance of more than one spermatozoon, the majority of male pronuclei become absorbed.


It may be noticed that, while the observations of Fol and Hertwig were admittedly made upon eggs in which the impregnation was delayed till they no longer displayed their pristine activity, Selenka's were made upon quite fresh eggs ; and it seems not impossible that the pathological symptoms in the embryos reared by the two former authors may have been due to the imperfection of the egg, and not to the entrance of more than one spermatozoon. This, of course, is merely a suggestion which requires to be tested by fresh observations.


IMPREGNATION OF THE OVUM. 85
Kupffer and Benecke have further shewn that although only one spermatozoon enters the ovum directly in Petromyzon yet other spermatozoa pass through the vitelline membrane, and are taken into a peculiar protoplasmic protuberance of the ovum which appears after impregnation.


influence on other male pronuclei, but to be attracted by the  
The act of impregnation may be described as the fusion of the ovum and spermatozoon, and the most important feature in this act appears to be the fusion of a male and female nucleus ; not only does this appear in the actual fusion of the two pronuclei, but it is brought into still greater prominence by the fact that the female pronucleus is a product of the nucleus of a primitive ovum, and the male pronucleus is the metamorphosed
female pronucleus. When there are several male pronuclei the  
segmentation is irregular and the resulting larva a monstrosity.
These statements of Fol and Hertwig are up to a certain point
in contradiction with the more recent results of Selenka. In
Toxopneustes variegatus Selenka finds that though impregnation
is usually effected by a single spermatozoon yet several may be
concerned in the act. The development continues, however, to
be normal up to the gastrula stage, at any rate, if three or even
four spermatozoa enter the egg almost simultaneously. Under
such circumstances each spermatozoon forms a separate pronucleus and star. Selenka is of opinion (apparently rather on
a priori grounds than as a result of direct observation) that
normal development cannot occur when more than one male
pronucleus fuses with the female pronucleus ; and holds that,
where he has observed such normal development after the  
entrance of more than one spermatozoon, the majority of male  
pronuclei become absorbed.


It may be noticed that, while the observations of Fol and
Hertwig were admittedly made upon eggs in which the impregnation was delayed till they no longer displayed their pristine
activity, Selenka's were made upon quite fresh eggs ; and it
seems not impossible that the pathological symptoms in the
embryos reared by the two former authors may have been due
to the imperfection of the egg, and not to the entrance of more
than one spermatozoon. This, of course, is merely a suggestion
which requires to be tested by fresh observations.


Kupffer and Benecke have further shewn that although only
one spermatozoon enters the ovum directly in Petromyzon yet
other spermatozoa pass through the vitelline membrane, and are
taken into a peculiar protoplasmic protuberance of the ovum
which appears after impregnation.


The act of impregnation may be described as the fusion of
86 SUMMARY.
the ovum and spermatozoon, and the most important feature in
this act appears to be the fusion of a male and female nucleus ;
not only does this appear in the actual fusion of the two pronuclei, but it is brought into still greater prominence by the fact
that the female pronucleus is a product of the nucleus of a
primitive ovum, and the male pronucleus is the metamorphosed






86 SUMMARY.  
head of the spermatozoon which, as stated above, contains part of the nucleus of the primitive spermatic cell. The spermatic cells originate from cells indistinguishable from the primitive ova, so that the fusion which takes place is the fusion of morphologically similar parts in the two sexes.


These conclusions tally very satisfactorily with the view adopted in the Introduction, that impregnation amongst the Metazoa was derived from the process of conjugation amongst the Protozoa.


Summary.


head of the spermatozoon which, as stated above, contains part
In what may probably be regarded as a normal case the following series of events accompanies the maturation and impregnation of an ovum :
of the nucleus of the primitive spermatic cell. The spermatic
cells originate from cells indistinguishable from the primitive
ova, so that the fusion which takes place is the fusion of morphologically similar parts in the two sexes.


These conclusions tally very satisfactorily with the view
(1) Transportation of the germinal vesicle to the surface of the egg.
adopted in the Introduction, that impregnation amongst the  
Metazoa was derived from the process of conjugation amongst
the Protozoa.  


Summary.  
(2) Absorption of the membrane of the germinal vesicle and metamorphosis of the germinal spot and nuclear reticulum.


In what may probably be regarded as a normal case the  
(3) Assumption of a spindle character by the remains of the germinal vesicle, these remains being probably in part formed from the germinal spot.
following series of events accompanies the maturation and impregnation of an ovum :


(1) Transportation of the germinal vesicle to the surface of  
(4) Entrance of one end of the spindle into a protoplasmic prominence at the surface of the egg.
the egg.  


(2) Absorption of the membrane of the germinal vesicle
(5) Division of the spindle into two halves, one remaining in the egg, the other in the prominence ; the prominence becoming at the same time nearly constricted off from the egg as a polar cell.
and metamorphosis of the germinal spot and nuclear reticulum.  


(3) Assumption of a spindle character by the remains of  
(6) Formation of a second polar cell in the same manner as the first, part of the spindle still remaining in the egg.
the germinal vesicle, these remains being probably in part
formed from the germinal spot.  


(4) Entrance of one end of the spindle into a protoplasmic
(7) Conversion of the part of the spindle remaining in the egg into a nucleus the female pronucleus.
prominence at the surface of the egg.  


(5) Division of the spindle into two halves, one remaining
(8) Transportation of the female pronucleus towards the centre of the egg.
in the egg, the other in the prominence ; the prominence becoming at the same time nearly constricted off from the egg as a
polar cell.  


(6) Formation of a second polar cell in the same manner as
(9) Entrance of one spermatozoon into the egg.
the first, part of the spindle still remaining in the egg.  


(7) Conversion of the part of the spindle remaining in the
(10) Conversion of the head of the spermatozoon into a nucleus the male pronucleus.
egg into a nucleus the female pronucleus.  


(8) Transportation of the female pronucleus towards the  
(i i) Appearance of radial striae round the male pronucleus, which gradually travels towards the female pronucleus.
centre of the egg.  


(9) Entrance of one spermatozoon into the egg.


(10) Conversion of the head of the spermatozoon into a
nucleus the male pronucleus.


(i i) Appearance of radial striae round the male pronucleus,
MATURATION AND IMPREGNATION OF THE OVUM. 87
which gradually travels towards the female pronucleus.  


(12) Fusion of male and female pronuclei to form the first segmentation nucleus.


(76) Auerbach. Organologische Stiidien, Heft 2. Breslau, 1874.


MATURATION AND IMPREGNATION OF THE OVUM. 87
(77) Bambeke. " Recherchess. Embryologie des Batraciens." Bull.detAcad. royale de Belgique, sme Ser., T. LXI., 1876.


(12) Fusion of male and female pronuclei to form the first
(78) E. van Beneden. "La Maturation de 1'OZuf des Mammiferes." Bull.de fAcad. royale de Belgique, 2me Sen, T. XL. No. 12, 1875.
segmentation nucleus.  


(76) Auerbach. Organologische Stiidien, Heft 2. Breslau, 1874.  
(79) Idem. " Contributions a 1'Histoire de la Vesicule Germinative, &c." Bull. de TAcad. royale de Belgique, sme Se"r., T. XLI. No. i, 1876.


(77) Bambeke. " Recherchess. Embryologie des Batraciens." Bull.detAcad.
(80) O. Biitschli. Eizelle, Zelltheilung, und Conjugation der Infusorien. Frankfurt, 1876.
royale de Belgique, sme Ser., T. LXI., 1876.  


(78) E. van Beneden. "La Maturation de 1'OZuf des Mammiferes." Bull.de
(81) F. M. Balfour. "On the Phenomena accompanying the Maturation and Impregnation of the Ovum." Quart. J. of Micros. Science, Vol. xvni., 1878.
fAcad. royale de Belgique, 2me Sen, T. XL. No. 12, 1875.  


(79) Idem. " Contributions a 1'Histoire de la Vesicule Germinative, &c." Bull.  
(82) Calberla. " Befruchtungsvorgang beim Ei von Petromyzon Planeri." Zeit. f. wiss. Zool., Vol. XXX.
de TAcad. royale de Belgique, sme Se"r., T. XLI. No. i, 1876.  


(80) O. Biitschli. Eizelle, Zelltheilung, und Conjugation der Infusorien. Frankfurt, 1876.  
(83) W. Flemming. " Studien in d. Entwickelungsgeschichte der Najaden." Sitz. d. k. Akad. Wien, B. LXXL, 1875.


(81) F. M. Balfour. "On the Phenomena accompanying the Maturation and
(84) H. Fol. "Die erste Entwickelung des Geryonideneies." Jenaische Zeitschrift, Vol. vii., 1873.
Impregnation of the Ovum." Quart. J. of Micros. Science, Vol. xvni., 1878.  


(82) Calberla. " Befruchtungsvorgang beim Ei von Petromyzon Planeri." Zeit.  
(85) Idem. " Sur le Developpement des Pteropodes." Archives de Zoologie Experimentale et Generale, Vol. IV. and V., 1875 6.
f. wiss. Zool., Vol. XXX.  


(83) W. Flemming. " Studien in d. Entwickelungsgeschichte der Najaden."  
(86) Idem. "Sur le Commencement de 1'Henogenie." Archives des Sciences Physiques et Naturelles. Geneve, 1877.
Sitz. d. k. Akad. Wien, B. LXXL, 1875.  


(84) H. Fol. "Die erste Entwickelung des Geryonideneies." Jenaische Zeitschrift, Vol. vii., 1873.  
(87) Idem. Recherches s. /. Fecondation et I. cornmen. d. FHenogenie. Geneve, 1879.


(85) Idem. " Sur le Developpement des Pteropodes." Archives de Zoologie
(88) R. Greeff. " Ueb. d. Bau u. d. Entwickelung d. Echinodermen. " Sitzun. der Gesellschaft z. Beforderung d. gesammten Naturiviss. z. Marburg, No. 5, 1876.
Experimentale et Generale, Vol. IV. and V., 1875 6.  


(86) Idem. "Sur le Commencement de 1'Henogenie." Archives des Sciences
(89) Oscar Hertwig. "Beit. z. Kenntniss d. Bildung, &c., d. thier. Eies." Morphologisches Jahrbuch, Vol. I., 1876.
Physiques et Naturelles. Geneve, 1877.  


(87) Idem. Recherches s. /. Fecondation et I. cornmen. d. FHenogenie. Geneve,  
(90) Idem. Ibid. Morphologisches Jahrbuch, Vol. in. Heft i, 1877.
1879.  


(88) R. Greeff. " Ueb. d. Bau u. d. Entwickelung d. Echinodermen. " Sitzun.
(91) Idem. " Weitere Beitrage, &c." Morphologisches Jahrbuch, Vol. ill., 1877, Heft 3.
der Gesellschaft z. Beforderung d. gesammten Naturiviss. z. Marburg, No. 5, 1876.  


(89) Oscar Hertwig. "Beit. z. Kenntniss d. Bildung, &c., d. thier. Eies."  
(92) Idem. "Beit. z. Kenntniss, &c." Morphologisches Jahrbuch, Vol. IV. Heft i and 2, 1878.
Morphologisches Jahrbuch, Vol. I., 1876.  


(90) Idem. Ibid. Morphologisches Jahrbuch, Vol. in. Heft i, 1877.  
(93) N. Kleinenberg. Hydra. Leipzig, 1872.


(91) Idem. " Weitere Beitrage, &c." Morphologisches Jahrbuch, Vol. ill., 1877,
(94) C. Kupffer u. B. Benecke. Der Vorgang d. Befruchtung am Eie d. Neunaugen. Konigsberg, 1878.
Heft 3.  


(92) Idem. "Beit. z. Kenntniss, &c." Morphologisches Jahrbuch, Vol. IV. Heft
(95) J. Oellacher. "Beitrage zur Geschichte des Keimblaschens im Wirbelthiereie." Archivf. micr. Anat., Bd. viil., 1872.
i and 2, 1878.  


(93) N. Kleinenberg. Hydra. Leipzig, 1872.  
(96) W. Salensky. " Befruchtung u. Furchung d. Sterlets-Eies." Zoologischer Anzeiger, No. u, 1878.


(94) C. Kupffer u. B. Benecke. Der Vorgang d. Befruchtung am Eie d.  
(97) E. Selenka. Befruchtung des Eies von Toxopneustesvariegatus. Leipzig,
Neunaugen. Konigsberg, 1878.


(95) J. Oellacher. "Beitrage zur Geschichte des Keimblaschens im Wirbelthiereie." Archivf. micr. Anat., Bd. viil., 1872.  
1878.


(96) W. Salensky. " Befruchtung u. Furchung d. Sterlets-Eies." Zoologischer
(98) Strasburger. Ueber Zellbildung u. Zelltheilung. Jena, 1876.
Anzeiger, No. u, 1878.  


(97) E. Selenka. Befruchtung des Eies von Toxopneustesvariegatus. Leipzig,  
(99) Idem. Ueber Befruchtung u. Zelltheilung. Jena, 1878.


1878.
(100) C. O. Whitman. "The Embryology of Clepsine." Quart. J. of Micr. Science, Vol. xvm., 1878.
 
(98) Strasburger. Ueber Zellbildung u. Zelltheilung. Jena, 1876.
 
(99) Idem. Ueber Befruchtung u. Zelltheilung. Jena, 1878.
 
(100) C. O. Whitman. "The Embryology of Clepsine." Quart. J. of Micr.  
Science, Vol. xvm., 1878.

Revision as of 11:31, 20 May 2020

Embryology - 16 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Foster M. and Sedgwick A. The Works of Francis Balfour Vol. II. A Treatise on Comparative Embryology 1. (1885) MacMillan and Co., London.

The Ovum and Spermatozoon | The Maturation and Impregnation of the Ovum | The Segmentation of the Ovum | Dicyemae and Orthonectidae Dicyema | Porifera | Coelenterata | Platyhelminthes | Rotifera | Mollusca | Polyzoa | Brachiopoda | Chilopoda | Discophora | Gephyrea | Chaetognatha | Nemathelminthes | Tracheata | Crustacea | Pcecilopoda | Echinodermata | Enteropneusta | Bibliography
Online Editor 
Mark Hill.jpg
This historic 1885 book edited by Foster and Sedgwick is the second of Francis Balfour's collected works published in four editions. Francis (Frank) Maitland Balfour, known as F. M. Balfour, (November 10, 1851 - July 19, 1882) was a British biologist who co-authored embryology textbooks.



The Works of Francis Balfour Foster M. and Sedgwick A. The Works of Francis Balfour Vol. I. Separate Memoirs (1885) MacMillan and Co., London.

Foster M. and Sedgwick A. The Works of Francis Balfour Vol. II. A Treatise on Comparative Embryology 1. (1885) MacMillan and Co., London.

Foster M. and Sedgwick A. The Works of Francis Balfour Vol. III. A Treatise on Comparative Embryology 2 (1885) MacMillan and Co., London.

Foster M. and Sedgwick A. The Works of Francis Balfour Vol. IV. Plates (1885) MacMillan and Co., London.

Modern Notes:

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)


Draft Version - Notice removed when completed.

Vol II. A Treatise on Comparative Embryology (1885)

Chapter II. The Maturation and Impregnation of the Ovum

Maturation of the ovum and formation of the polar bodies.

IN the preceding chapter the changes in the ovum were described nearly up to the period when it became ripe, and ready to be impregnated. Preparatory to the act of impregnation there take place however a series of remarkable changes, which more especially concern the germinal vesicle.

The attention of a large number of investigators has recently been directed to these changes as well as to the phenomena of impregnation. The results of their investigations will be described in the present chapter ; but for an historical account of these investigations, as well as for a determination of the delicate questions of priority, the reader is referred to Fol's memoir (No. 87), and to a paper by the author (No. 81).

The nature of the changes which take place in the maturation of the ovum may perhaps be most conveniently displayed by following the history of a single ovum. For this purpose the eggs of Asterias glacialis, which have recently formed the subject of a series of beautiful researches by Fol (87), may be selected.

The ripe ovum (fig. 22), when detached from the ovary is formed of a granular vitellus enveloped in a mucilaginous coat,



FIG. 11. RIPE OVUM OF ASTERIAS GLACIALIS ENVELOPED IN A MUCILAGINOUS ENVELOPE, AND CONTAINING AN ECCENTRIC GERMINAL VESICLE AND GERMINAL

SPOT (copied from Fol).


MATURATION OF THE OVUM.


69


the zona radiata. It contains an eccentrically-situated germinal vesicle and a germinal spot. In the former is -present the usual protoplasmic reticulum. As soon as the ovum reaches the seawater the germinal vesicle commences to undergo a peculiar metamorphosis. It exhibits frequent changes of form, the reti


FIG. 23. Two SUCCESSIVE STAGES IN THE GRADUAL METAMORPHOSIS OF THE

GERMINAL VESICLE AND SPOT OF THE OVUM OF ASTERIAS GLACIALIS IMMEDIATELY AFTER IT is LAID (copied from Fol).

culum vanishes, its membrane becomes gradually absorbed, its outline indented and indistinct, and finally its contents become to a certain extent confounded with the vitellus (fig. 23).

The germinal spot .at the same time loses its clearness of outline and gradually disappears from view.

At this stage, and between it and the stage represented in fig. 26, the action of reagents brings to light certain appearances the nature of which is not yet fully cleared up for Asterias, which have been described somewhat differently by Fol for Ast. glacialis and Hertwig for Asteracanthion.

Fol finds immediately after the stage just described that a star is visible between the remains of the germinal vesicle and the surface of the egg, which is connected with an imperfectlyformed nuclear spindle extending towards the germinal vesicle 1 . At the end of the nuclear spindle may be seen the broken up fragments of the germinal spot.

At a slightly later stage, in the place of the original germinal vesicle there may be observed in the fresh

1 By the term 'nuclear spindle' I refer to the peculiar form of a double striated cone assumed by the nucleus just before division, which is no doubt familiar to all my readers. I use the term star for the peculiar stellate figure usually visible at the poles of the nuclear spindle. For a further description of these parts the reader is referred to Chapter IV.



FIG. 24. OVUM OF ASTERIAS GLACIALIS, SHEWING THE CLEAR SPACES IN THE PLACE OF THE GERMINAL

VESICLE. FRESH PREPARATION (copied from Fol). .


GERMINAL VESICLE.



ovum two clear spaces (fig. 24), one ovoid and nearer the surface, and the second more irregular in form and situated rather deeper in the vitellus. In the upper space parallel stride may be observed. By treatment with reagents the first clear space is found to be formed of a horizontally-placed spindle with two terminal stars, near which irregular remains of the germinal spot may be seen. Slightly later (fig. 25) there may be seen on the lower side of the spindle a somewhat irregular body, which may possibly be part of the remains of the germinal spot, though Fol holds that it is probably part of the membrane of the germinal vesicle. The lower clear space visible in the fresh ovum now contains a round body, fig. 25. Fol concludes that the spindle is formed out of part of the germinal vesicle and not from the germinal spot, while he sees in the round body present in the lower of the two clear spaces the metamorphosed germinal spot. He will not, however, assert that no fragment of the germinal spot enters into the formation of the spindle.

The following is Hertwig's (No. 92) account of the changes in the germinal vesicle in Asteracanthion. Shortly after the egg is laid the protoplasm on the side of the germinal vesicle towards the surface of the egg develops a prominence which presses

inwards the wall of the vesicle. At the same time the germinal spot develops a large vacuole, in the interior of which is a body consisting of nuclear substance, and formed of a firmer and more refractive material than the remainder of the germinal spot. In the prominence first mentioned as projecting inwards towards the germinal vesicle first one star, formed by radial striae of protoplasm, and then a second make their appearance ; while the germinal spot appears to have vanished, the outline of the germinal vesicle to have become indistinct, and its contents to have mingled with the surrounding protoplasm. Treatment with reagents demonstrates that in the process of disappearance of the germinal spot the nuclear mass in its vacuole forms a rod-like body, the free end of which is situated between the two stars which occupy the prominence indenting the germinal vesicle. At a later period granules may be seen at the end of the rod and finally the rod itself vanishes. After these -changes by the aid of reagents there may be demonstrated a spindle between the two stars, which Hertwig believes to grow in size as the last remnants of the germinal spot gradually vanish, and he maintains that the spindle is formed at the expense of the germinal spot. The stage with this spindle corresponds with fig. 25.

Several of Hertwig's figures closely correspond with those of Fol, and considering how conflicting is the evidence before us, it seems necessary


FlG. 25. OVUM OF ASTERIAS GLACIALIS, AT THE SAME STAGE AS FIG. 24, TREATED WITH PICRIC ACID (copied

from Fol).


MATURATION OF THE OVUM.


to leave open for Asterias the question as to what parts of the germinal vesicle are concerned in forming the first spindle.

A clearer view of the phenomena which take place at this stage has been obtained by Fol in the case of Heteropods (Pterotrachaea). In the ovum a few minutes after it has been laid the germinal vesicle becomes very pale, and two stars make their appearance round a clear substance near its poles. The nucleus itself is somewhat elongated, and commences to exhibit at its poles longitudinal striae, which gradually extend towards the centre at the expense of the nuclear reticulum, from a metamorphosis of which they are directly derived. When the striae of the two sides have nearly met, thickenings may be observed in the recticulum between them, which give rise, where the striae of the two sides unite, to the central thickenings of the fibres (nuclear plate). In this way a complete nuclear spindle is established 1 .

The important result of Fol's observations on Heteropods, which tallies also with what is found in Asterias, is that a spindle with two stars at its poles is formed from the metamorphosis of the germinal vesicle and surrounding protoplasm (fig. 25).

Polar cells. The spindle has up to this time been situated with its axis parallel to the surface of the egg, but in somewhat older specimens a vertical spindle is found, with one end projecting into a protoplasmic prominence which makes its appearance on the surface of the egg (fig. 26). Hertwig believes that the spindle simply travels towards the surface, and while doing so changes the direction of its axis. Fol asserts, however, that this is not the case, but that between the two phases of the spindle an intermediate one is found in which a spindle can no longer be seen in the egg, but its place is taken by a body with a dentated outline. He has not been able to arrive at a conclusion as to what meaning is to be attached to



Fig. 26. PORTION OF


OF THE DETACHMENT OF THE FIRST POLAR BODY AND THE WITHDRAWAL OF THE REMAINING PART OF THE SPINDLE WITHIN THE OVUM. PICRIC ACID PREPARATION

(copied from Fol).


For the further details on the nuclear spindle vide the next Chapter.


POLAR CELLS.



FIG. 27. PORTION OF THE OVUM OF ASTERIAS GLACIALIS, WITH THE FIRST POLAR CELL AS IT APPEARS WHEN LIVING (copied from Fol).



this occurrence, which does not appear to take place in Heteropods.

In any case the spindle which projects into the prominence on the surface of the egg divides into two parts, one in the prominence and one in the egg (fig. 26). The prominence itself with the enclosed portion of the spindle becomes constricted off from the egg to form a body, well known to embryologists as the polar body or cell (fig. 27). Since more than one polar cell is formed, that which is the earliest to appear may be called the first polar cell.

The part of the spindle which remains in the egg becomes directly converted into a second spindle by the elongation of its fibres, without passing through a typical nuclear condition. A second polar cell next becomes formed in the same manner as the first (fig. 28), and the portion of the spindle remaining in the egg becomes converted into two or three clear vesicles (fig. 29), which soon unite to form a single nucleus (fig. 30). The new nucleus which is clearly derived from part of the original germinal vesicle is called the female pronucleus, for reasons which will appear in the sequel.

The two polar cells appear to be situated between two membranes, the outer of which is very delicate, and only distinct where it covers the polar cells, while the inner one is thicker and becomes, after impregnation, more distinct, and then forms what Fol speaks of as the vitelline membrane. It is clear, as Hertwig has pointed out, that the polar bodies


FIG. 28. PORTION OF THE OVUM OF ASTERIAS GLACIALIS IMMEDIATELY AFTER THE FORMATION OF THE SECOND POLAR CELL. PICRIC ACID PREPARA


FIG. 29. PORTION OF

THE OVUM OF ASTERIAS GLACIALIS AFTER THK FORMATION OF THE SF.COND POLAR CELL, SHEWING THE PART OF THE SPINDLE REMAINING IN THE OVUM BECOMING CONVERTED INTO TWO CLEAR VESICLES. PlCRIC ACID PREPARATION

(copied from Fol).


MATURATION OF THE OVUM.


73


originate by a regular process of cell-division and have the value of cells.

A peculiar phenomenon makes its appearance in the eggs of Clepsine shortly after the formation of the polar cells, which has been spoken of by Whitman (No. 100) as the formation of the polar rings. The following is his description of the occurrence.

" Fifteen minutes after the elimination of the polar globules (i.e. cells) a ring-like depression or constriction appears in the yolk around the oral pole, and in this depression a transparent liquid substance (nuclear ?) is collected forming the first polar ring.... The same phenomena repeat themselves later at the aboral pole.... The rings concentrate to form two discs.... Before the first cleavage both discs plunge deep into the egg."

The nature of these rings is at present quite obscure.

Considering how few ova have been adequately investigated with reference to the behaviour of the germinal vesicle, any general conclusions which may at present be formed are to be regarded as provisional.

There is however abundant evidence that at the time of maturation of the egg the germinal vesicle undergoes peculiar changes, which are, in part at least, of a retrogressive character. These changes may begin considerably before the egg has reached the period of maturity, or may not take place till after it has been laid. They consist in an appearance of irregularity and obscurity in the outline of the germinal vesicle, the absorption of its membrane, the partial absorption of its contents in the yolk, the disappearance of the reticulum, and the breaking up and disappearance of the germinal spot. The exact fate of the single germinal spot, or the numerous spots where they are present, is still obscure.

The retrogressive metamorphosis of the germinal vesicle is followed in a large number of instances by the conversion of what remains into a striated spindle similar in character to a nucleus previous to division^ This spindle travels to the surface of the ovum and undergoes division to form the polar cell or cells in the



FIG. 30. OVUM OF ASTERIAS GLACIALIS WITH THE TWO POLAR

CELLS AND THE FEMALE PRONUCLEUS SURROUNDED BY RADIAL STRIDE, AS SEEN IN THE LIVING EGG (copied from

Fol).


74 POLAR CELLS.


manner above described. The part which remains in the egg forms eventually the female pronucleus.

The germinal vesicle has up to the present time only been observed to undergo the above series of changes in a certain number of instances, which, however, include examples from several divisions of the Ccelenterata, the Echinodermata, and the Mollusca, some of the Vermes [Turbellarians (Leptoplana], Nematodes, Hirudinea, Alciope, Sagitta], Ascidians, etc. It is very possible, not to say probable, that such changes are universal in the animal kingdom, but the present state of our knowledge does not justify us in saying so.

In the Craniata especially our knowledge of the formation of the polar bodies is very unsatisfactory. In Petromyzon Kupffer and Benecke have brought forward evidence to shew that one polar body is formed prior to the impregnation, and a second in connection with a peculiar prominence of protoplasm after impregnation. Part of the germinal vesicle remains in the egg as the female pronucleus. In the Sturgeon the germinal vesicle atrophies and breaks up before impregnation, and afterwards part is found as a granular mass on the surface of the egg, while part forms a female pronucleus.

In Amphibia the observations of Hertwig (90) and Bambeke (77) tend to shew that after the germinal vesicle has assumed a superficial situation at the pigmented pole of the ovum its contents become intermingled with the yolk, and are in part extruded from the ovum as a granular mass after impregnation. Part of them remains in the ovum and forms a female pronucleus. Whether there is a proper division of the germinal vesicle as in typical cases is not known.

Oellacher (95) by a series of careful observations upon the egg of the trout, and subsequently of the bird, demonstrated that in the ovum while still in the ovary, the germinal vesicle underwent a kind of degeneration and eventually became ejected, in part at any rate. My own observations on Elasmobranchs, which require enlargement and confirmation, tend to shew that this part may be the membrane. Ed. van Beneden (78) has contributed some important observations on the rabbit. His account is as follows. As the ovum approaches maturity the germinal vesicle assumes an eccentric position, and fuses with the peripheral layer of the egg to constitute the cicatricular lens. The germinal spot next travels to the surface of the cicatricular lens and forms the nuclear disc: at the same time the membrane of the germinal vesicle vanishes, though it probably unites with the nuclear disc. The plasma of the nucleus then collects into a definite mass and forms the nucleoplasmic body. Finally the nuclear disc assumes an ellipsoidal form and becomes the nuclear body. Nothing is now left of the original germinal vesicle but the nuclear body and the nucleoplasmic body, both still situated within the ovum. In the next stage no trace of the germinal


MATURATION OF THE OVUM. 75

vesicle can be detected in the ovum, but outside it, close to the point where the modified remnants of the vesicle were previously situated, there is present a polar body which is composed of two parts, one of which stains deeply and resembles the nuclear body, and the other does not stain but is similar to the nucleoplasmic body. Van Beneden concludes that the parts of the polar body are the two ejected products of the germinal vesicle. We may be perhaps permitted to hold that further observations on this difficult object will demonstrate that part of the germinal vesicle remains in the ovum to form the female pronucleus.

With reference to invertebrate forms attention may be called to the observations of Biitschli (80). Although in Cucullanus a normal formation of the polar bodies takes place, yet in the Nematodes generally, Biitschli has been unable to find the spindle modification of the germinal vesicle, but states that the germinal vesicle undergoes degeneration, its outline becoming indistinct and the germinal spot vanishing. The position of the germinal vesicle continues to be marked by a clear space, which gradually approaches the surface of the egg. When it is in contact with the surface a small spherical body, the remnant of the germinal vesicle, comes into view, and eventually becomes ejected. The clear space subsequently disappears.

In addition to the types just quoted, which may very probably turn out to be normal in the mode of formation of the polar bodies, there is a large number of types, including the whole of the Rotifera and Arthropoda with a few doubtful exceptions 1 , in which the polar cells cannot as yet be said to have been satisfactorily observed.

The more important of the doubtful cases amongst the Rotifera and Arthropoda are the following.

Flemming (83) finds that in the summer and probably parthenogenetic eggs of Lacinularia socialis the germinal vesicle approaches the surface and becomes invisible, and that subsequently a slight indentation in the outline of the egg marks the point of its disappearance. In the hollow of the indentation Flemming believes a polar cell to be situated, though he has not definitely seen one.

Hoek 2 believes that he has found a polar body in the ovum of Balanus balanoides, but his observations are not perfectly satisfactory.

1 The best instance of what appears like a polar cell in Arthropoda is a body recently found by Grobben (" Entwicklungsgeschichte d. Moina rectirostris." Claus' Arbeiten, Vol. II., Wien, 1879) near the surface of the protoplasm at the animal pole of the summer and parthenogenetic eggs of Moina rectirostris, one of the Cladocera. The body stains deeply with carmine, but differs from normal polar cells in not being separated from the ovum ; and its identification as a polar cell must remain doubtful till it has been shewn to originate from the germinal vesicle.

2 "Zur -Entwicklung d. Entomostraken." Niederlandischer Archiv. f. Zoologie, Vol. in. p. 62.


76 FUNCTION OF POLAR CELLS.

Biitschli, who has expressly searched for the polar bodies in the ova of Rotifera, was unable to find any trace of them, though he found that as the egg became ripe the germinal vesicle became half its original size. In the parthenogenetic eggs of Aphis he also failed to find a trace of polar bodies, though the germinal vesicle, after the germinal spot had broken up into fragments, approached the surface and disappeared.

Whatever may be the eventual result of more extended investigation, it is clear that the formation of polar cells according to the type described above is a very constant occurrence. Its importance is increased by the discovery by Strasburger of the existence of an analogous process amongst plants. Two questions about it obviously present themselves for solution : (i) What are the conditions of its occurrence with reference to impregnation ? (2) What meaning has it in the development of the ovum or the embryo ?

The answer to the first of these questions is not difficult to find. The formation of the polar bodies is independent of impregnation, and is the final act of the normal growth of the ovum. In a few types the polar cells are formed while the ovum is still in the ovary, as, for instance, in some species of Echini, Hydra, etc., but, according to our present knowledge, far more usually after the ovum has been laid. In some instances the budding-off of the polar cells precedes, and in other instances follows impregnation ; but there is no evidence to shew that in the latter cases the process is influenced by the contact with the male element. In Asterias, as has been shewn by O. Hertwig and Fol, the formation of the polar cells may indifferently either precede or follow impregnation a fact which affords a clear demonstration of the independence of the two occurrences.

To the second of the two questions it does not unfortunately seem possible at present to give an answer which can be regarded as satisfactory.

The retrogressive changes in the membrane of the germinal vesicle which usher in the formation of the polar bodies may very probably be viewed as a prelude to a renewed activity of the contents of the vesicle ; and are perhaps rendered the more necessary from the thickness of the membrane which results from a protracted period of passive growth. This suggestion does not, however, help us to explain the formation of polar


MATURATION OF THE OVUM.


bodies by a process identical with cell-division. The ejection of part of the germinal vesicle in the formation of the polar cells may probably be paralleled by the ejection of part or the whole of the original nucleus which, if we may trust the beautiful researches of Butschli, takes place during conjugation in Infusoria as a preliminary to the formation of a fresh nucleus. This comparison is due to Butschli, and according to it the formation of the polar bodies would have to be regarded as assisting, in some as yet unknown way, the process of regeneration of the germinal vesicle. Views analogous to this are held by Strasburger and Hertwig, who regard the formation of the polar bodies in the light of a process of excretion or removal of useless material. Such hypotheses do not, unfortunately, carry us very far.

I would suggest that in the formation of the polar cells part of the constituents of the germinal vesicle, which are requisite for its functions as a complete and independent nucleus, is removed, to make room for the supply of the necessary parts to it again by the spermatic nucleus.

My view amounts to the following, viz. that after the formation of the polar cells the remainder of the germinal vesicle within the ovum (the female pronucleus) is incapable of further development without the addition of the nuclear part of the male element (spermatozoon), and that if polar cells were not formed parthenogenesis might normally occur. A strong support for this hypothesis would be afforded were it to be definitely established that a polar body is not formed in the Arthropoda and Rotifera ; since the normal occurrence of parthenogenesis is confined to these two groups. It is certainly a remarkable coincidence that they are the only two groups in which polar bodies have not so far been satisfactorily observed.

It is perhaps possible that the part removed in the formation of the polar cells is not absolutely essential ; and this seems at first sight to follow from the fact of parthenogenesis being possible in instances where impregnation is the normal occurrence. The genuineness of the observations on this head is too long a subject to enter into here 1 , but after admitting,

1 The instances quoted by Siebold, Parthenogenesis d. Arthropoden, are not quite satisfactory. In Hensen's case, p. 234, impregnation would have been possible if we can suppose the spermatozoa to be capable of passing into the body-cavity through the


78 FUNCTION OF. POLAR CELLS.

as we probably must, that there are genuine cases of such parthenogenesis, it cannot be taken for granted without more extended observation that the occurrence of development in these rare instances may not be due to the polar cells not having been formed as usual, and that when the polar cells are formed the development without impregnation is impossible.

Selenka found in the case of Purpura lapillus that no polar body was formed in the eggs which did not develop, but in the case of Neritina, Biitschli has found that this does not hold good.

The remarkable observations of Greeff (No. 88) on the parthenogenetic development of the eggs of Asterias rubens tell, however, very strongly against the above hypothesis. Greeff has found that under normal circumstances the eggs of this species of starfish will develop without impregnation in simple sea-water. The development is quite regular and normal, though much slower than in the case of impregnated eggs. It is not definitely stated that polar cells are formed, but there can be no doubt that this is implied. GreefPs account is so precise and circumstantial that it is not easy to believe that any error can have crept in ; but neither Hertwig nor Fol have been able to repeat his experiments, and we may be permitted to wait for further confirmation before absolutely accepting them.

To the suggestion already made with reference to the function of the polar cells, I will venture to add the further one, that the function of forming polar cells has been acquired by the ovum for the express purpose of Preventing parthenogenesis.

The explanation given by Mr Darwin of the evil effects of self-fertilization, viz. the want of sufficient differentiation in the sexual elements 1 , would apply with far greater force to cases of parthenogenesis.

In the production of fresh individuals, two circumstances are obviously favourable to the species, (i) That the maximum number possible of fresh individuals should be produced, (2) That the individuals should be as vigorous as possible. Sexual differentiation (even in hermaphrodites) is clearly very inimical to the production of the maximum number of individuals. There can be little doubt that the ovum is potentially capable of developing by itself into a fresh individual, and therefore, unless the absence of sexual differentiation was very injurious to the vigour of the progeny, parthenogenesis would most certainly be a very constant occurrence ; and, on the analogy of the arrangements in plants to prevent selffertilization, we might expect to find some contrivance both in animals and in

open end of the uninjured oviduct ; and though Oellacher's instances are more valuable, yet sufficient care seems hardly to have been taken, especially when it is not certain for what length of time spermatozoa may be able to live in the oviduct. For Oellacher's precautions, vide Zeit. fur Wiss. Zool., Bd. xxii., p. 202. A better instance is that of a sow given by Bischoff, Ann. Sci. Nat., series 3, Vol. n., 1844. The unimpregnated eggs were found divided into segments, but the segments did not contain the usual nucleus, and were perhaps nothing else than the parts of an ovum in a state of disruption.

1 Darwin, Cross- and Self- Fertilization of Plants, p. 443.


MATURATION OF THE OVUM. 79

plants to prevent the ovum developing by itself without fertilization. If my view about the polar cells is correct, the formation of these bodies functions as such a contrivance.

Reproduction by budding or fission has probably arisen as a means of increasing the number of individuals produced, so that the co-existence of asexual with sexual reproduction is to be looked on as a kind of compromise for the loss of the power of rapid reproduction due to the absence of parthenogenesis. In the Arthropoda and Rotifera the place of budding has been taken by parthenogenesis, which may be a frequent, though not always a necessary occurrence, as in various Branchiopoda (Apus, Limnadia, etc.) and Lepidoptera (Psyche helix:, etc.); or a regular occurrence for the production of one sex, as in Bees, Wasps, Nematus, etc. ; or an occurrence confined to a certain stage in the cycle of development in which all the individuals reproduce their kind parthenogenetically, as in Aphis, Cecidomyia, Gall Insects (Neuroterus, etc.), Daphnia 1 .

On my hypothesis the possibility of parthenogenesis, or at any rate its frequency, in Arthropoda and Rotifera is possibly due to the absence of polar cells. In the case of all animals, so far as is known to me, fertilization of the ovum occasionally occurs 2 , but there are instances in the vegetable kingdom where so-called parthenogenesis appears to be capable of recurring for an indefinite period. One of the best instances appears to be that of Ccelebogyne, an introduced exotic Euphorbiaceous plant which regularly produces fertile seeds although a male flower never appears. The recent researches of Strasburger have however shewn that in Ccelebogyne and other parthenogenetic flowering plants, embryos are formed by the budding and subsequent development of cells belonging to the ovule. This being the case, it is impossible to assert of these plants that they are really parthenogenetic, for the embryos contained in the seed of a flower which has certainly not been fertilized, may have been formed, not by the development of the ovum, but by budding from the surrounding tissue of the ovule.

The above view with reference to the nature of the polar bodies is not to be regarded as forming more than an hypothesis.

Impregnation of the Ovum.

A far greater amount of certainty has been attained as to the effects of impregnation than as to the changes of the germinal vesicle which precede this, and there appears, moreover, to be a greater uniformity in the series of resulting phenomena.

1 Mr J. A. Osborne has recently shewn (Nature, Sept. 4, 1879), that the eggs of a Beetle (Gastrophysa raphani) may occasionally develop, up to a certain point at any rate, without the male influence.

2 Dicyema, which is an apparent exception, has not yet been certainly shewn to develop true ova. If its germs are true ova it forms an exception to the above rule.


IMPREGNATION OF THE OVUM.


It will be convenient again to take Asterias glacialis as the type. The part of the germinal vesicle which remains in the egg, after the formation of the second polar cell, becomes converted into a number of small vesicles (fig. 29), which aggregate



B.

FIG. 31. SMALL PORTIONS OF THE OVUM OF ASTERIAS GLACIALIS. THE SPERMATOZOA ARE SHEWN ENVELOPED IN THE MUCILAGINOUS COAT. IN A. A PROMINENCE IS RISING FROM THE SURFACE OF THE EGG TOWARDS THE NEAREST

SPERMATOZOON; AND IN B. THE SPERMATOZOON AND PROMINENCE HAVE MET. (Copied from Fol.)


themselves into a single clear nucleus, which toward the centre of the egg and around which, as a centre, the protoplasm becomes radiately striated (fig. 30). This nucleus is known as the female pronucleus. By the action of reagents a nucleolus may be shewn in it. In Asterias glacialis the most favourable period for fecundation is about an hour after the formation of the female pronucleus. If at this time the spermatozoa are allowed to come in contact with the egg, their heads soon become enveloped in the investing mucilaginous coat. A prominence, pointing towards the nearest spermatozoon, now arises from the superficial layer of protoplasm of the egg, and grows till it comes in contact with the spermatozoon (fig. 31, A and B). Under normal circumstances the spermatozoon which meets the prominence is the only one concerned in the fertilization,


gradually travels



1IG. 32. 1'OKTION OF THE OVUM OF ASTERIAS GLACIALIS AFTER THE ENTRANCE OF A SPERMATOZOON INTO THE OVUM, IT SHEWS THE PROMINENCE OF THE OVUM THROUGH WHICH THE SPERMATOZOON HAS ENTERED. A VITELLINEMEMBRANEW1TH A CRATER-LIKE OPENING HAS BECOME DISTINCTLY FORMED.

(Copied from Fol.)


IMPREGNATION OF THE OVUM.


8l


and it makes its way into the egg by passing through the prominence. The tail of the spermatozoon, no longer motile, remains visible for some time after the head has bored its way in, but its place is soon taken by a pale conical body, which is, however, probably in part a product of the metamorphosis of the tail itself (fig. 32). It eventually becomes absorbed into the body of the ovum.

At the moment of contact between the spermatozoon and the egg the outermost layer of the protoplasm of the latter raises itself as a distinct membrane, which separates from the egg and prevents the entrance of other spermatozoa. At the point where the spermatozoon entered a crater-like opening is left in the membrane, through which the metamorphosed tail of the spermatozoon may at first be seen projecting (fig. 32).

The head of the spermatozoon when in the egg forms a nucleus, for which the name male pronucleus may be conveniently adopted. It grows in size, probably by assimilating material from the ovum, and around it is formed a clear space free from yolk-spherules. Shortly after its formation the protoplasm in its neighbourhood assumes a radiate arrangement (fig. 33). At whatever point of the egg the spermatozoon may have entered, it gradually travels towards the female FlG . 33> QVUM OF ASTERIAS pronucleus. The latter, around GLACIALIS, WITH MALE AND FEMALE

PRONUCLEUS AND A RADIAL STRIA which the protoplasm no longer TION OF THE PROTOPLASM AROUND has a radiate arrangement, re- THE FORMER. (Copied from FoL) mains motionless till the rays of

the male pronucleus come in contact with it, after which its condition of repose is exchanged for one of activity, and it rapidly approaches the male pronucleus, apparently by means of its inherent amoeboid contractions, and eventually fuses with it (figs. 3436).

As the male pronucleus approaches the female the latter, according to Selenka, sends out protoplasmic processes which B. n. 6



82


MALE PRONUCLEUS.


embrace the former. The actual fusion does not take place till after the pronuclei have been in contact for some time. While the two pronuclei are approaching one another the protoplasm of the egg exhibits amoeboid movements.

The product of the fusion of the two pronuclei forms the first segmentation nucleus (fig. 37), which soon, however, divides into the two nuclei of the two first segmentation spheres.

The phenomenon which has just been described consists essentially in the fusion of the male cell and the female cell. In this act the protoplasm of the two cells as well as their nuclei coalesce, since the whole spermatozoon which has been absorbed into the ovum is a cell of which the head is the nucleus.

It is clear that the ovum after fertilization is an entirely different body to the ovum prior to that act, and unless the use of the same term for the two conditions of the ovum had become very familiar, a special term, such as oosperm, for the ovum after its fusion with the spermatozoon, would be very convenient.




FIGS. 34, 35, AND 36. THREE SUCCESSIVE STAGES IN THE COALESCENCE OF THE MALE AND FEMALE PRONUCLEI IN ASTERIAS GLACIALIS. FROM THE LIVING OVUM. (Copied from Fol.)

Of the earlier observations on this subject there need perhaps only be cited one of E. van Beneden, on the rabbit's ovum, shewing the presence of two nuclei before the commencement of segmentation. Butschli was the earliest to state from observations on Rhabditis dolichura that the first segmentation nucleus arose from the fusion of two nuclei, and this was subsequently shewn with greater detail for Ascaris nigrovenosa, by Auerbach (76). Neither of these authors gave at the first the correct interpretation of their results. At a later period Butschli (80) arrived at the conclusion that in a large number of in- FIG. 37 OVUM OF ASTERIAS stances (Lymnaus, Nephelis, Cucullanus, GLACIALIS, AFTER THE COALESCENCE

f ' OF THE MALE AND FEMALE PRONU &c.), the nucleus in question was formed CLEI . (Copied from Fol.)



IMPREGNATION OF THE OVUM. 83

by the fusion of two or more nuclei, and Strasburger at first made a similar statement for Phallusia, though he has since withdrawn it. Though Biitschli's statements depend, as it seems, upon a false interpretation of appearances, he nevertheless arrived at a correct view with reference to what occurs in impregnation. Van Beneden (78) described in the rabbit the formation of the original segmentation nucleus from two nuclei, one peripheral and the other central, and deduced from his observations that the 'peripheral nucleus was derived from the spermatic element. It was reserved for Oscar Hertwig (89) to describe in Echinus lividus the entrance of a spermatozoon into the egg and the formation from it of the male pronucleus.

The general fact that impregnation consists in the fusion of the spermatozoon and ovum has now been established for some forms in the majority of invertebrate groups (Arthropoda and Rotifera excepted). Amongst Vertebrata also it has been shewn by E. van Beneden that the first segmentation nucleus is formed by the coalescence of the male and female pronucleus. Calberla, and Kupffer and Benecke have demonstrated that a single spermatozoon enters at first the ovum of Petromyzon.

The contact of the spermatozoon with the egg-membrane causes in Petromyzon active movements of the protoplasm of the ovum, and a retreat of the protoplasm from the membrane.

In Amphibia the appearance of a peculiar pigmented streak extending inwards from the surface of the pigmented pole of the ovum,, and containing in a clear space at its inner extremity a nucleus, has been demonstrated as the result of impregnation by Bambeke (77) and Hertwig (90). There can be little doubt that this nucleus is the male pronucleus, and that the pigmented streak indicates its path inwards. Close to it Hertwig has shewn that another nucleus is to be found, the female pronucleus, and that eventually the two join together. In Amphibia the phenomena accompanying impregnation are clearly of the same nature as in the Invertebrata. A precisely similar series of phenomena to those in Amphibia has been shewn by Salensky to take place in the Sturgeon.

Although there is a general agreement between the most recent observers, Hertwig, Fol, Selenka, Strasburger, c., as to the main facts connected with the entrance of one spermatozoon into the egg, the formation of the male pronucleus, and its fusion with the female pronucleus, there still exist differences of detail in the different descriptions, which partly, no doubt,

62


84 MALE PRONUCLEUS.


depend upon the difficulties of observation, but partly also upon the observations not having all been made upon the same species. Hertwig does not enter into details with reference to the actual entrance of the spermatozoon into the egg, but in his latest paper points out that considerable differences may be observed in the occurrences which succeed impregnation, according to the relative period at which this takes place. When, in Asterias, the impregnation is effected about an hour after the egg is laid, and previously to the formation of the polar cells, the male pronucleus appears at first to exert but little influence on the protoplasm, but after the formation of the second polar cell, the radial striae around it become very marked, and the pronucleus rapidly grows in size. When it finally unites with the female pronucleus it is equal in size to the latter. In the case when the impregnation is deferred for four hours the male pronucleus never becomes so large as the female pronucleus. With reference to the effect of the time at which impregnation takes place, Asterias would seem to serve as a type. Thus in Hirudinea, Mollusca, and Nematoidea impregnation normally takes place before the formation of the polar bodies is completed, and the male pronucleus is accordingly as large as the female. In Echinus, on the other hand, where the polar bodies are formed in the ovary, the male pronucleus is always small.

Selenka, who has investigated the formation of the male pronucleus in Toxopneustes variegatus, differs in certain points from Fol. He finds that usually, though not always, a single spermatozoon enters the egg, and that though the entrance may be effected at any part of the surface it generally occurs at the point marked by a small prominence where the polar cells are formed. The spermatozoon first makes its way through the mucous envelope of the egg, within which it swims about, and then bores with its head into the polar prominence.

One important point has been so far only indirectly alluded to, viz. the number of spermatozoa required to effect impregnation.

The concurrent testimony of almost all observers tends to shew that one only is required for this purpose. But the number of cases tested is too small to admit of satisfactory generalization.

Both Hertwig and Fol have made observations on the result of the entrance into the egg of several spermatozoa. Fol finds that when the impregnation has been too long delayed the vitelline membrane is formed with comparative slowness, and several spermatozoa are thus enabled to penetrate. Each spermatozoon forms a separate pronucleus with a surrounding star ; and several male pronuclei usually fuse with the female pronucleus. Each male pronucleus appears to exercise a repulsive


IMPREGNATION OF THE OVUM. 85

influence on other male pronuclei, but to be attracted by the female pronucleus. When there are several male pronuclei the segmentation is irregular and the resulting larva a monstrosity. These statements of Fol and Hertwig are up to a certain point in contradiction with the more recent results of Selenka. In Toxopneustes variegatus Selenka finds that though impregnation is usually effected by a single spermatozoon yet several may be concerned in the act. The development continues, however, to be normal up to the gastrula stage, at any rate, if three or even four spermatozoa enter the egg almost simultaneously. Under such circumstances each spermatozoon forms a separate pronucleus and star. Selenka is of opinion (apparently rather on a priori grounds than as a result of direct observation) that normal development cannot occur when more than one male pronucleus fuses with the female pronucleus ; and holds that, where he has observed such normal development after the entrance of more than one spermatozoon, the majority of male pronuclei become absorbed.

It may be noticed that, while the observations of Fol and Hertwig were admittedly made upon eggs in which the impregnation was delayed till they no longer displayed their pristine activity, Selenka's were made upon quite fresh eggs ; and it seems not impossible that the pathological symptoms in the embryos reared by the two former authors may have been due to the imperfection of the egg, and not to the entrance of more than one spermatozoon. This, of course, is merely a suggestion which requires to be tested by fresh observations.

Kupffer and Benecke have further shewn that although only one spermatozoon enters the ovum directly in Petromyzon yet other spermatozoa pass through the vitelline membrane, and are taken into a peculiar protoplasmic protuberance of the ovum which appears after impregnation.

The act of impregnation may be described as the fusion of the ovum and spermatozoon, and the most important feature in this act appears to be the fusion of a male and female nucleus ; not only does this appear in the actual fusion of the two pronuclei, but it is brought into still greater prominence by the fact that the female pronucleus is a product of the nucleus of a primitive ovum, and the male pronucleus is the metamorphosed


86 SUMMARY.


head of the spermatozoon which, as stated above, contains part of the nucleus of the primitive spermatic cell. The spermatic cells originate from cells indistinguishable from the primitive ova, so that the fusion which takes place is the fusion of morphologically similar parts in the two sexes.

These conclusions tally very satisfactorily with the view adopted in the Introduction, that impregnation amongst the Metazoa was derived from the process of conjugation amongst the Protozoa.

Summary.

In what may probably be regarded as a normal case the following series of events accompanies the maturation and impregnation of an ovum :

(1) Transportation of the germinal vesicle to the surface of the egg.

(2) Absorption of the membrane of the germinal vesicle and metamorphosis of the germinal spot and nuclear reticulum.

(3) Assumption of a spindle character by the remains of the germinal vesicle, these remains being probably in part formed from the germinal spot.

(4) Entrance of one end of the spindle into a protoplasmic prominence at the surface of the egg.

(5) Division of the spindle into two halves, one remaining in the egg, the other in the prominence ; the prominence becoming at the same time nearly constricted off from the egg as a polar cell.

(6) Formation of a second polar cell in the same manner as the first, part of the spindle still remaining in the egg.

(7) Conversion of the part of the spindle remaining in the egg into a nucleus the female pronucleus.

(8) Transportation of the female pronucleus towards the centre of the egg.

(9) Entrance of one spermatozoon into the egg.

(10) Conversion of the head of the spermatozoon into a nucleus the male pronucleus.

(i i) Appearance of radial striae round the male pronucleus, which gradually travels towards the female pronucleus.


MATURATION AND IMPREGNATION OF THE OVUM. 87

(12) Fusion of male and female pronuclei to form the first segmentation nucleus.

(76) Auerbach. Organologische Stiidien, Heft 2. Breslau, 1874.

(77) Bambeke. " Recherchess. Embryologie des Batraciens." Bull.detAcad. royale de Belgique, sme Ser., T. LXI., 1876.

(78) E. van Beneden. "La Maturation de 1'OZuf des Mammiferes." Bull.de fAcad. royale de Belgique, 2me Sen, T. XL. No. 12, 1875.

(79) Idem. " Contributions a 1'Histoire de la Vesicule Germinative, &c." Bull. de TAcad. royale de Belgique, sme Se"r., T. XLI. No. i, 1876.

(80) O. Biitschli. Eizelle, Zelltheilung, und Conjugation der Infusorien. Frankfurt, 1876.

(81) F. M. Balfour. "On the Phenomena accompanying the Maturation and Impregnation of the Ovum." Quart. J. of Micros. Science, Vol. xvni., 1878.

(82) Calberla. " Befruchtungsvorgang beim Ei von Petromyzon Planeri." Zeit. f. wiss. Zool., Vol. XXX.

(83) W. Flemming. " Studien in d. Entwickelungsgeschichte der Najaden." Sitz. d. k. Akad. Wien, B. LXXL, 1875.

(84) H. Fol. "Die erste Entwickelung des Geryonideneies." Jenaische Zeitschrift, Vol. vii., 1873.

(85) Idem. " Sur le Developpement des Pteropodes." Archives de Zoologie Experimentale et Generale, Vol. IV. and V., 1875 6.

(86) Idem. "Sur le Commencement de 1'Henogenie." Archives des Sciences Physiques et Naturelles. Geneve, 1877.

(87) Idem. Recherches s. /. Fecondation et I. cornmen. d. FHenogenie. Geneve, 1879.

(88) R. Greeff. " Ueb. d. Bau u. d. Entwickelung d. Echinodermen. " Sitzun. der Gesellschaft z. Beforderung d. gesammten Naturiviss. z. Marburg, No. 5, 1876.

(89) Oscar Hertwig. "Beit. z. Kenntniss d. Bildung, &c., d. thier. Eies." Morphologisches Jahrbuch, Vol. I., 1876.

(90) Idem. Ibid. Morphologisches Jahrbuch, Vol. in. Heft i, 1877.

(91) Idem. " Weitere Beitrage, &c." Morphologisches Jahrbuch, Vol. ill., 1877, Heft 3.

(92) Idem. "Beit. z. Kenntniss, &c." Morphologisches Jahrbuch, Vol. IV. Heft i and 2, 1878.

(93) N. Kleinenberg. Hydra. Leipzig, 1872.

(94) C. Kupffer u. B. Benecke. Der Vorgang d. Befruchtung am Eie d. Neunaugen. Konigsberg, 1878.

(95) J. Oellacher. "Beitrage zur Geschichte des Keimblaschens im Wirbelthiereie." Archivf. micr. Anat., Bd. viil., 1872.

(96) W. Salensky. " Befruchtung u. Furchung d. Sterlets-Eies." Zoologischer Anzeiger, No. u, 1878.

(97) E. Selenka. Befruchtung des Eies von Toxopneustesvariegatus. Leipzig,

1878.

(98) Strasburger. Ueber Zellbildung u. Zelltheilung. Jena, 1876.

(99) Idem. Ueber Befruchtung u. Zelltheilung. Jena, 1878.

(100) C. O. Whitman. "The Embryology of Clepsine." Quart. J. of Micr. Science, Vol. xvm., 1878.