Barr body, polar bodies and Balbiani body; and the male sex body and chromatoid body.


References

Is pronuclear scoring a really good predictor for ICSI cycles?

Gynecol Endocrinol. 2010 Sep 1.

Aydin S, Cinar O, Demir B, Korkmaz C, Ozdegirmenci O, Dilbaz S, Goktolga U.

Center for Assisted Reproductive Medicine and IVF, Etlik Zubeyde Hanim Women's Health Teaching and Research Hospital, Ankara 06010, Turkey. Abstract Background/Aims. Since the assessments of the morphology of oocytes, zygotes and/or embryos are of crucial importance to select the best candidate for pregnancy, many morphological evaluation tools have been proposed. Although embryo scoring, particularly cleavage and blastocyst stages, is more convincing due to successful results, zygote scoring still have a bias as different outcomes. In the current study, we designed a prospective study to test the reliability of zygote scoring by focusing on zygote evaluation techniques and its relation with embryo development and embryo selection for transfer. Methods. A total of 1215 mature oocytes from 139 couples were evaluated for the study. Results. There is no correlation between published zygote scoring technique and embryo development. Conclusions. We conclude that the inconsistency of data obtained from zygote scoring might be caused by the static nature of pronuclear stage embryos and thus pronuclear scoring seems to be unreliable evaluation technique for embryo selection.

PMID: 20807168 http://www.ncbi.nlm.nih.gov/pubmed/20807168


Number of blastomeres and distribution of microvilli in cloned mouse embryos during compaction

Zygote. 2010 Aug 25:1-6.

Li CB, Wang ZD, Zheng Z, Hu LL, Zhong SQ, Lei L.

Department of Histology and Embryology, Harbin Medical University, Harbin, China. Abstract SummaryThe events resulting in compaction have an important influence on the processes related to blastocyst formation. To analyse the quality of the embryos obtained by somatic cell nuclear transfer (SCNT) in aspects different from previous studies, not only the number of blastomeres of cloned embryos during the initiation of compaction, but also the distribution of microvilli in cloned, normal, parthenogenetic, and tetraploid embryos before and after compaction was preliminarily investigated in mouse. Our results showed that during compaction the number of blastomeres in SCNT embryos was fewer than that in intracytoplasmic sperm injection (ICSI) embryos and, before compaction, there was a uniform distribution of microvilli over the blastomere surface, but microvilli became restricted to an apical region after compaction in the four types of embryos. We also reported here that the time course of compaction in SCNT embryos was about 3 h delayed compared with that in ICSI embryos, while there was no significant difference between SCNT and ICSI embryos when developed to the 4-cell stage. We concluded that: (i) the cleavage of blastomeres in cloned embryos was slow at least before compaction; (ii) the distribution of microvilli in cloned, normal, parthenogenetic, and tetraploid embryos was coherent before and after compaction; and (iii) the initiation of compaction in SCNT embryos was delayed compared with that of ICSI embryos.

PMID: 20735894

http://www.ncbi.nlm.nih.gov/pubmed/20735894

Journal

Zygote An international journal dedicated to the rapid publication of original research in early embryology, Zygote covers interdisciplinary studies in animals and humans, from gametogenesis through fertilization to gastrulation.