Talk:Zona pellucida: Difference between revisions

From Embryology
No edit summary
Line 1: Line 1:
{{Talk Page}}
{{Talk Page}}
==10 Most Recent==
{{10 Most Recent}}
===Zona pellucida===
<pubmed limit=5>zona+pellucida</pubmed>
===Zona pellucida birefringence===
<pubmed limit=5>zona+pellucida+birefringence</pubmed>
==2012==


==2011==
==2011==

Revision as of 11:38, 21 December 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 28) Embryology Zona pellucida. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Zona_pellucida

10 Most Recent

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)

Zona pellucida

<pubmed limit=5>zona+pellucida</pubmed>

Zona pellucida birefringence

<pubmed limit=5>zona+pellucida+birefringence</pubmed>


2012

2011

Biosynthesis of hamster zona pellucida is restricted to the oocyte

Theriogenology. 2011 Feb;75(3):463-72. Epub 2010 Nov 12.

Izquierdo-Rico MJ, Gimeno L, Jiménez-Cervantes C, Ballesta J, Avilés M. Department of Cell Biology and Histology, Faculty of Medicine, University of Murcia, Murcia, Spain.

Abstract

The zona pellucida (ZP) is an extracellular coat that surrounds the mammalian oocyte and the early embryo until implantation. This coat mediates several critical aspects of fertilization, including species-selective sperm recognition, the blocking of polyspermy and protection of the oocyte and the preimplantation embryo. Depending on the species, the ZP is composed of three to four different glycoproteins encoded by three or four genes. These genes have been cloned and sequenced for different species. However, controversy exists about the cell type specificity of the ZP glycoproteins, for which several models have been proposed. Different groups have reported that ZP is produced only by the oocytes, by the granulosa cells or by both cell types, depending on the species under study. We recently described the expression of four ZP proteins in the hamster ovary. By means of the complete set of the hamster ZP cDNAs, we undertook the study of the origin and expression pattern of the four ZP genes. In the present work, the expression of ZP1, ZP2, ZP3 and ZP4 is carefully analyzed by in situ hybridization (ISH) in hamster ovaries. Our data suggest that the four hamster ZP genes are expressed in a coordinate and oocyte-specific manner during folliculogenesis. Furthermore, this expression is maximal during the first stages of the oocyte development and declines in oocytes from later development stages, particularly within large antral follicles.

Copyright © 2011 Elsevier Inc. All rights reserved.


PMID 21074836

2010

High doses of medroxyprogesterone as the cause of disappearance of adherence of the zona pellucida to an oocyte

Protoplasma. 2010 Oct;246(1-4):101-7. Epub 2010 Aug 17.

Jodłowska-Jedrych B, Jedrych M, Matysiak W. Source Department of Histology and Embryology, Medical University of Lublin, Radziwiłłowska 11, 20-080, Lublin, Poland. b.jedrych@gmail.com

Abstract

The zona pellucida (ZP) is an external glycoprotein membrane of oocytes of mammals and embryos in the early stage of their development. ZP first appears in growing ovarian follicles as an extracellular substance between the oocyte and granular cells. The zona pellucid markedly affects the development and maturation of the oocyte. The morphology of the ZP-oocyte complex allows a more precise determination of the oocyte maturity. According to numerous experimental studies, ZP is essential for preimplantation embryonic development of humans and other mammals. It prevents dispersion of blastomeres and enhances their mutual interactions. ZP is a dynamic structure responsible for the provision of nutrients to early forms of oocytes in mammals. The aim of the present study was untrastructural evaluation of the ZP-oocyte contact during inhibited ovulation. Female white rats (Wistar strain) received a suspension of medroxyprogesterone acetate (MPA) in incremental intramuscular bolus doses of 3.7 mg (therapeutic dose), 7.4 mg and 11.1 mg. The animals were decapitated 5 days after the administration of MPA. Ovarian sections were evaluated under a transmission electron microscope (TEM) Zeiss EM 900. Morphometric analysis of ZP was conducted using the cell imaging system by Olympus. In females exposed to therapeutic doses of MPA, ZP showed the structure of granular-fibrous reticulum of a medium electron density with single cytoplasmic processes originating from the surrounding structures. The oocyte cell membrane generated single, delicate processes directed toward ZP. Microvilli of the oocyte were short and thin. In the group receiving 7.4 mg of MPA, ZP had the structure of a delicate, loose granular-fibrous reticulum, and the oocyte cell membrane generated single microvilli directed toward ZP. In both those groups, the close ZP-oocyte contact was observed. Otherwise, in the group exposed to the highest MPA doses (11.1 mg), thicker and more numerous oocyte microvilli were found, which did not penetrate ZP matrix. They were dense, irregularly separated contour, forming a barrier between ZP and oocyte. The present findings are likely to suggest that MPA has inhibiting effects on the synthesis of binding proteins and causes the loss of the oocyte contact with ZP.

PMID 20714762

2009

New insights into the mechanisms of fertilization: comparison of the fertilization steps, composition, and structure of the zona pellucida between horses and pigs

Biol Reprod. 2009 Nov;81(5):856-70. Epub 2009 Jul 8.

Mugnier S, Dell'Aquila ME, Pelaez J, Douet C, Ambruosi B, De Santis T, Lacalandra GM, Lebos C, Sizaret PY, Delaleu B, Monget P, Mermillod P, Magistrini M, Meyers SA, Goudet G. Institut National de la Recherche Agronomique, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France.

Abstract

The mechanism of fertilization remains largely enigmatic in mammals. Most studies exploring the molecular mechanism underlying fertilization have been restricted to a single species, generally the mouse, without a comparative approach. However, the identification of divergences between species could allow us to highlight key components in the mechanism of fertilization. In the pig, in vitro fertilization (IVF) and polyspermy rates are high, and spermatozoa penetrate easily through the zona pellucida (ZP). In contrast, IVF rates are low in the horse, and polyspermy is scarce. Our objective was to develop a comparative strategy between these two divergent models. First, we compared the role of equine and porcine gametes in the following five functions using intraspecific and interspecific IVF: ZP binding, acrosome reaction, penetration through the ZP, gamete fusion, and pronucleus formation. Under in vitro conditions, we showed that the ZP is a determining element in sperm-ZP attachment and penetration, whereas the capacity of the spermatozoa is of less importance. In contrast, the capacity of the spermatozoa is a key component of the acrosome reaction step. Second, we compared the composition and structure of the equine and porcine ZP. We observed differences in the number and localization of the ZP glycoproteins and in the mesh-like structure of the ZP between equine and porcine species. These differences might correlate with the differences in spermatozoal attachment and penetration rates. In conclusion, our comparative approach allows us to identify determining elements in the mechanism of fertilization.

PMID: 19587333 http://www.ncbi.nlm.nih.gov/pubmed/19587333

2008

Zona pellucida glycoproteins

J Biol Chem. 2008 Sep 5;283(36):24285-9. Epub 2008 Jun 6.

Wassarman PM. Source Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA. paul.wassarman@mssm.edu Abstract All mammalian eggs are surrounded by a relatively thick extracellular coat, the zona pellucida, that plays vital roles during oogenesis, fertilization, and preimplantation development. The mouse zona pellucida consists of three glycoproteins that are synthesized solely by growing oocytes and assemble into long fibrils that constitute a matrix. Zona pellucida glycoproteins are responsible for species-restricted binding of sperm to unfertilized eggs, inducing sperm to undergo acrosomal exocytosis, and preventing sperm from binding to fertilized eggs. Many features of mammalian and non-mammalian egg coat polypeptides have been conserved during several hundred million years of evolution.

PMID 18539589


2007

Detection of zona pellucida proteins during human folliculogenesis

Hum Reprod. 2008 Feb;23(2):394-402. Epub 2007 Nov 22.

Gook DA, Edgar DH, Borg J, Martic M. Reproductive Services, Royal Women's Hospital, 132 Grattan Street, Carlton, Victoria 3053, Australia. debra.gook@rwh.org.au

Abstract BACKGROUND: The stage of folliculogenesis at which the human zona pellucida (ZP) is initiated and the cells responsible for the origin of the ZP continue to be controversial. This study characterizes the development of the ZP during human folliculogenesis using ovarian samples donated from patients requesting ovarian storage. METHODS: Follicles (from n = 18 patients, 14-40 years old) within fresh tissue and following development in a xenograft system were stained, using immunohistochemical techniques, for the presence of the three human ZP proteins, ZP1, ZP2 and ZP3. Over 500 primordial follicles and >20 follicles at each developmental stage were examined. RESULTS: All three ZP proteins were detected within the oocyte of the primordial follicle. Presence of ZP1 and ZP3 was observed in the majority of primordial oocytes (93% and 95%, respectively), whereas ZP2 was detected in only 32% of these follicles. The three ZP proteins were detected in the cytoplasm of cuboidal granulosa cells and their distribution correlates with developmental stages throughout folliculogenesis. CONCLUSIONS: ZP proteins were detected in both the oocyte and the granulosa cells as early as the primordial follicle stage in the human. The detection of ZP proteins in the quiescent primordial follicle suggests that these proteins have been present since oogenesis. PMID: 18033806

All three ZP proteins were detected within the oocyte of the primordial follicle. Presence of ZP1 and ZP3 was observed in the majority of primordial oocytes (93% and 95%, respectively), whereas ZP2 was detected in only 32% of these follicles. The three ZP proteins were detected in the cytoplasm of cuboidal granulosa cells and their distribution correlates with developmental stages throughout folliculogenesis. CONCLUSIONS: ZP proteins were detected in both the oocyte and the granulosa cells as early as the primordial follicle stage in the human. The detection of ZP proteins in the quiescent primordial follicle suggests that these proteins have been present since oogenesis.

PMID 18033806

2006

Three-dimensional structure of the zona pellucida at ovulation

Microsc Res Tech. 2006 Jun;69(6):415-26.

Familiari G, Relucenti M, Heyn R, Micara G, Correr S. Laboratory of Electron Microscopy, Pietro M. Motta, Department of Anatomy, University of Rome La Sapienza, 00161 Rome, Italy. giuseppe.familiari@uniroma1.it

Abstract

The mammalian zona pellucida (ZP) is an extracellular matrix surrounding oocytes and early embryos, which is critical for normal fertilization and preimplantation development. It is made up of three/four glycoproteins arranged in a delicate filamentous matrix. Scanning electron microscopy (SEM) studies have shown that ZP has a porous, net-like structure and/or nearly smooth and compact aspect. In this study, the fine 3-D structure of the human and mouse ZP is reviewed with the aim to integrate ultrastructural and molecular data, considering that the mouse is still used as a good model for human fertilization. By conventional SEM observations, numerous evidences support that the spongy ZP appearance well correlates with mature oocytes. When observed through more sophisticated techniques at high resolution SEM, ZP showed a delicate meshwork of thin interconnected filaments, in a regular alternating pattern of wide and tight meshes. In mature oocytes, the wide meshes correspond to "pores" of the "spongy" ZP, whereas the tight meshes correspond to the compact parts of the ZP surrounding the pores. In conclusion, the traditional "spongy" or "compact" appearance of the ZP at conventional SEM appears to be only the consequence of a prevalence of different arrangements of microfilament networks, according to the maturation stage of the oocyte, and in agreement with the modern supramolecular model of the ZP at the basis of egg-sperm recognition. Despite great differences in molecular characterization of ZP glycoproteins between human and mouse ZP, there are no differences in the 3-D organization of glycoproteic microfilaments in these species.

PMID: 16703610 http://www.ncbi.nlm.nih.gov/sites/entrez/16703610

2002

Subcellular distribution of ZP1, ZP2, and ZP3 glycoproteins during folliculogenesis and demonstration of their topographical disposition within the zona matrix of mouse ovarian oocytes

Biol Reprod. 2002 Apr;66(4):866-76.

El-Mestrah M, Castle PE, Borossa G, Kan FW. Department of Anatomy and Cell Biology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6.

Abstract

The zona pellucida (ZP) is an extracellular coat synthesized and secreted by the oocyte during follicular development and surrounding the plasma membrane of mammalian eggs. To date, the mechanism of synthesis and secretion, mode of assembly, and intracellular trafficking of the ZP glycoproteins have not been fully elucidated. Using antibodies against mouse ZP1, ZP2, and ZP3 in conjunction with the protein A-gold technique, we have shown an association of immunolabeling with the Golgi apparatus, secretory granules, and a complex structure called vesicular aggregate, respectively, in mouse ovarian follicles. In contrast, the neighboring granulosa cells were not reactive to any of the three antibodies used. Immunolabeling of ZP1, ZP2, and ZP3 was detected throughout the entire thickness of the ZP, irrespective of the developmental stage of ovarian follicles. Double and triple immunolocalization studies, using antibodies tagged directly to different sizes of gold particles, revealed an asymmetric spatial distribution of the three ZP glycoproteins in the zona matrix at various stages of follicular development. All three glycoproteins were specifically localized over small patches of darkly stained flocculent substance dispersed throughout the zona matrix. Very often, ZP1, ZP2, and ZP3 were found in close association. These results confirm findings from previous studies demonstrating that ovarian oocytes and not granulosa cells are the only source for mouse ZP glycoproteins. In addition, results from our morphological and immunocytochemical experiments suggest that the vesicular aggregates in the ooplasm are likely to serve as an intermediary in the synthesis and secretion of ZP glycoproteins. The stoichiometric disposition of ZP1, ZP2, and ZP3 in the zona matrix as revealed by double and triple immunolocalization studies provide further insight into some of the unanswered questions pertinent to the current model of mouse ZP structure proposed by the Wassarman group. PMID: 11906903



http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582072/?tool=pmcentrez

http://www.springer.com/open+access/open+choice?SGWID=0-40359-12-683308-0

Springer Copyright and Open Access License

"Publishing an article with open access - be it in Springer's hybrid program Open Choice or in full open access titles - leaves the copyright with the author. The article is published under the Creative Commons Attribution-Noncommercial License, which allows users to read, copy, distribute and make derivative works for non-commercial purposes from the material, as long as the author of the original work is cited. The commercial rights are protected by Springer."


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2528931/?tool=pmcentrez

American Society for Microbiology -

http://mcb.asm.org/

http://www.asm.org/index.php?option=com_content&view=article&id=90986