Difference between revisions of "Talk:Trisomy 18"

From Embryology
m
m
Line 14: Line 14:
  
 
<pubmed limit=5>Edwards Syndrome</pubmed>
 
<pubmed limit=5>Edwards Syndrome</pubmed>
 +
 +
==2018==
  
  
Line 103: Line 105:
 
radial aplasia/hypoplasia
 
radial aplasia/hypoplasia
 
|}
 
|}
 +
 +
==1989==
 +
J Am Coll Cardiol. 1989 Jun;13(7):1586-97.
 +
Cardiac malformations in trisomy-18: a study of 41 postmortem cases.
 +
Van Praagh S1, Truman T, Firpo A, Bano-Rodrigo A, Fried R, McManus B, Engle MA, Van Praagh R.
 +
Author information
 +
Abstract
 +
The cardiac malformations in 41 karyotyped and autopsy cases of trisomy-18 are presented in detail. The salient findings were a ventricular septal defect in all cases; tricuspid valve anomalies in 33 cases (80%); pulmonary valve anomalies in 30 (70%); aortic valve malformations in 28 (68%); mitral valve anomalies in 27 (66%); polyvalvular disease (that is, malformations of more than one valve) in 38 (93%); a subpulmonary infundibulum (conus) in 40 (98%); a bilateral conus with a short subaortic infundibulum in 1 case with double outlet right ventricle (this being the only documented case of bilateral infundibulum in trisomy-18); double outlet right ventricle in 4 cases (10%), three having a subpulmonary infundibulum only and all 4 having mitral atresia; tetralogy of Fallot in 6 cases (15%), 2 having pulmonary atresia; and a striking absence of transposition of the great arteries and inversion at any level (visceral or cardiac), findings that appear to be characteristic of all trisomies. These data suggest that excessive chromosomal material (as in trisomies) may result in situs solitus at all levels. The malformations of the atrioventricular and semilunar valves were characterized by redundant or thick myxomatous leaflets, long chordae tendineae and hypoplastic or absent papillary muscles. The ventricular septal defect was associated with anterosuperior conal septal malalignment in 25 cases (61%). On the basis of the characteristic valvular lesions, the type of ventricular septal defect and the absence of transposition or inversions, two-dimensional echocardiographic diagnosis of trisomy-18 in the fetus may become possible.
 +
PMID: 2723271
 +
 +
The cardiac malformations in 41 karyotyped and autopsy cases of trisomy-18 are presented in detail. The salient findings were a ventricular septal defect in all cases; tricuspid valve anomalies in 33 cases (80%); pulmonary valve anomalies in 30 (70%); aortic valve malformations in 28 (68%); mitral valve anomalies in 27 (66%); polyvalvular disease (that is, malformations of more than one valve) in 38 (93%); a subpulmonary infundibulum (conus) in 40 (98%); a bilateral conus with a short subaortic infundibulum in 1 case with double outlet right ventricle (this being the only documented case of bilateral infundibulum in trisomy-18); double outlet right ventricle in 4 cases (10%), three having a subpulmonary infundibulum only and all 4 having mitral atresia; tetralogy of Fallot in 6 cases (15%), 2 having pulmonary atresia; and a striking absence of transposition of the great arteries and inversion at any level (visceral or cardiac), findings that appear to be characteristic of all trisomies.

Revision as of 13:28, 23 July 2018

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2020, August 11) Embryology Trisomy 18. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Trisomy_18

OMIM

TRISOMY 18-LIKE SYNDROME

10 Most Recent

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Trisomy 18

<pubmed limit=5>Trisomy 18</pubmed>

Edwards Syndrome

<pubmed limit=5>Edwards Syndrome</pubmed>

2018

2016

Fetal outcome of trisomy 18 diagnosed after 22 weeks of gestation: Experience of 123 cases at a single perinatal center

Congenit Anom (Kyoto). 2016 Jan;56(1):35-40. doi: 10.1111/cga.12118.

Nagase H1,2, Ishikawa H1, Toyoshima K3, Itani Y3, Furuya N4, Kurosawa K5, Hirahara F2, Yamanaka M6.

Abstract

To investigate the pregnancy outcome of the fetuses with trisomy 18, we studied 123 cases of trisomy 18 who were born at our hospital from 1993 to 2009. Among them, 95.9% were diagnosed with trisomy 18 prenatally. Prenatal ultrasound findings showed fetal growth restriction in 77.2%, polyhydramnios in 63.4% and congenital heart defects in 95.1%. For 18 cases, cesarean section (C-section) was chosen, and for 75 cases, transvaginal delivery was chosen. Premature delivery occurred in 35.5%. Stillbirths occurred in 50 cases (40.7%). Fetal demise before onset of labor occurred in 30 cases and fetal demise during labor occurred in 20 cases which was 26.7% of vaginal deliveries. Among the 73 live-born infants, the survival rate for 24 h, 1 week, 1 month and 1 year were 63%, 43%, 33% and 3%. The median survival time was 3.5 days. There was no significant difference between the survival time of C-section and that of vaginal delivery. However, for the births involving breech presentation, the survival time of C-section was significantly longer than that of vaginal delivery. When the fetus is diagnosed with trisomy 18, the parents have to make many choices. These findings constitute critical information in prenatal counseling to the couples whose fetuses have been found to have trisomy 18, especially when they choose palliative approaches in the perinatal management. © 2015 Japanese Teratology Society. KEYWORDS: management; palliative care; prenatal ultrasound findings; prognosis; trisomy 18

  • Fetal outcome of trisomy 18 diagnosed after 22 weeks of gestation: Experience of 123 cases at a single perinatal center[1]
  • 123 cases (1993 to 2009) 95.9% prenatal diagnosis
  • ultrasound - fetal growth restriction in 77.2%, polyhydramnios in 63.4% and congenital heart defects in 95.1%.
  • 18 cases, cesarean section (C-section)
  • 75 cases, transvaginal delivery Premature delivery occurred in 35.5%.
  • Stillbirths occurred in 50 cases (40.7%).
  • Fetal demise before onset of labor in 30 cases and fetal demise during labor in 20 cases which was 26.7% of vaginal deliveries.
  • 73 live-born infants, the survival rate for 24 h, 1 week, 1 month and 1 year were 63%, 43%, 33% and 3%. The median survival time was 3.5 days."


PMID 26104883

2013

Other External links

http://en.wikipedia.org/wiki/File:Overlapping_fingers.JPG

2012

The trisomy 18 syndrome

Orphanet J Rare Dis. 2012 Oct 23;7(1):81. [Epub ahead of print]

Cereda A, Carey JC.

Abstract

The trisomy 18 syndrome, also known as Edwards syndrome, is a common chromosomal disorder due to the presence of an extra chromosome 18, either full, mosaic trisomy, or partial trisomy 18q. The condition is the second most common autosomal trisomy syndrome after trisomy 21. The live born prevalence is estimated as 1/6,000-1/8,000, but the overall prevalence is higher (1/2500-1/2600) due to the high frequency of fetal loss and pregnancy termination after prenatal diagnosis. The prevalence of trisomy 18 rises with the increasing maternal age. The recurrence risk for a family with a child with full trisomy 18 is about 1%.Currently most cases of trisomy 18 are prenatally diagnosed, based on screening by maternal age, maternal serum marker screening, or detection of sonographic abnormalities (e.g., increased nuchal translucency thickness, growth retardation, choroid plexus cyst, overlapping of fingers, and congenital heart defects ). The recognizable syndrome pattern consists of major and minor anomalies, prenatal and postnatal growth deficiency, an increased risk of neonatal and infant mortality, and marked psychomotor and cognitive disability. Typical minor anomalies include characteristic craniofacial features, clenched fist with overriding fingers, small fingernails, underdeveloped thumbs, and short sternum. The presence of major malformations is common, and the most frequent are heart and kidney anomalies. Feeding problems occur consistently and may require enteral nutrition.Despite the well known infant mortality, approximately 50% of babies with trisomy 18 live longer than 1 week and about 5-10% of children beyond the first year. The major causes of death include central apnea, cardiac failure due to cardiac malformations, respiratory insufficiency due to hypoventilation, aspiration, or upper airway obstruction and, likely, the combination of these and other factors (including decisions regarding aggressive care). Upper airway obstruction is likely more common than previously realized and should be investigated when full care is opted by the family and medical team.The complexity and the severity of the clinical presentation at birth and the high neonatal and infant mortality make the perinatal and neonatal management of babies with trisomy 18 particularly challenging, controversial, and unique among multiple congenital anomaly syndromes. Health supervision should be diligent, especially in the first 12 months of life, and can require multiple pediatric and specialist evaluations.

PMID 23088440

http://www.ojrd.com/content/7/1/81/abstract

Table

Frequency Organ/System Prevalent type of malformation
Common (>75%) heart septal defects, patent ductus arteriosus, and polyvalvular disease
Frequent (25-75%) genitourinary horseshoe kidney
Less frequent (5-25%) gastrointestinal

central nervous system

craniofacial

eye

limb

omphalocele, esophageal atresia with tracheo-esophageal fistula, pyloric stenosis, Meckel diverticulum

cerebellar hypoplasia, agenesis of corpus callosum, polymicrogyria, spina bifida

orofacial clefts

microphthalmia, coloboma, cataract, corneal opacities

radial aplasia/hypoplasia

1989

J Am Coll Cardiol. 1989 Jun;13(7):1586-97. Cardiac malformations in trisomy-18: a study of 41 postmortem cases. Van Praagh S1, Truman T, Firpo A, Bano-Rodrigo A, Fried R, McManus B, Engle MA, Van Praagh R. Author information Abstract The cardiac malformations in 41 karyotyped and autopsy cases of trisomy-18 are presented in detail. The salient findings were a ventricular septal defect in all cases; tricuspid valve anomalies in 33 cases (80%); pulmonary valve anomalies in 30 (70%); aortic valve malformations in 28 (68%); mitral valve anomalies in 27 (66%); polyvalvular disease (that is, malformations of more than one valve) in 38 (93%); a subpulmonary infundibulum (conus) in 40 (98%); a bilateral conus with a short subaortic infundibulum in 1 case with double outlet right ventricle (this being the only documented case of bilateral infundibulum in trisomy-18); double outlet right ventricle in 4 cases (10%), three having a subpulmonary infundibulum only and all 4 having mitral atresia; tetralogy of Fallot in 6 cases (15%), 2 having pulmonary atresia; and a striking absence of transposition of the great arteries and inversion at any level (visceral or cardiac), findings that appear to be characteristic of all trisomies. These data suggest that excessive chromosomal material (as in trisomies) may result in situs solitus at all levels. The malformations of the atrioventricular and semilunar valves were characterized by redundant or thick myxomatous leaflets, long chordae tendineae and hypoplastic or absent papillary muscles. The ventricular septal defect was associated with anterosuperior conal septal malalignment in 25 cases (61%). On the basis of the characteristic valvular lesions, the type of ventricular septal defect and the absence of transposition or inversions, two-dimensional echocardiographic diagnosis of trisomy-18 in the fetus may become possible. PMID: 2723271

The cardiac malformations in 41 karyotyped and autopsy cases of trisomy-18 are presented in detail. The salient findings were a ventricular septal defect in all cases; tricuspid valve anomalies in 33 cases (80%); pulmonary valve anomalies in 30 (70%); aortic valve malformations in 28 (68%); mitral valve anomalies in 27 (66%); polyvalvular disease (that is, malformations of more than one valve) in 38 (93%); a subpulmonary infundibulum (conus) in 40 (98%); a bilateral conus with a short subaortic infundibulum in 1 case with double outlet right ventricle (this being the only documented case of bilateral infundibulum in trisomy-18); double outlet right ventricle in 4 cases (10%), three having a subpulmonary infundibulum only and all 4 having mitral atresia; tetralogy of Fallot in 6 cases (15%), 2 having pulmonary atresia; and a striking absence of transposition of the great arteries and inversion at any level (visceral or cardiac), findings that appear to be characteristic of all trisomies.

  1. <pubmed>26104883</pubmed>