Talk:Tongue Development

From Embryology
Revision as of 08:57, 11 February 2014 by Z8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 16) Embryology Tongue Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Tongue_Development

Original Page original Head and Neck Development - Tongue page

10 Most Recent Papers

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Tongue Embryology

<pubmed limit=5>Tongue Embryology</pubmed>


Tongue Development

<pubmed limit=5>Tongue Development</pubmed>

2013

Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development

J Biol Chem. 2013 Apr 12;288(15):10440-50. doi: 10.1074/jbc.M112.432286. Epub 2013 Mar 4.

Song Z, Liu C, Iwata J, Gu S, Suzuki A, Sun C, He W, Shu R, Li L, Chai Y, Chen Y. Author information

Abstract

Cleft palate represents one of the most common congenital birth defects in humans. TGFβ signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFβ signaling function during palatogenesis. In this study, we investigated the function of TGFβ activated kinase 1 (Tak1), a key regulator of Smad-independent TGFβ signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFβ signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting. PMID 23460641

2012

2011

Morphological variations of the vallate papillae in some mammalian species

Anat Sci Int. 2013 Nov 16. [Epub ahead of print]

El Sharaby AA, El-Gendy SA, Alsafy MA, Nomir AG, Wakisaka S. Source Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt, elsharaby@yahoo.com.

Abstract

The morpho-structural characteristics of the vallate papillae of the tongue of rat, dog, donkey and buffalo were investigated by macroscopy and their microstructure by light and scanning electron microscopy (SEM). The numbers of vallate papillae varied among the different species. In rat, a single vallate papilla surrounded by incomplete groove and an annular fold was observed. Taste buds were detected along the entire length of the medial and lateral groove epithelium, but not in the papillary dome. In dog, some papillae lacking the annular pad had irregular ridges and grooves toward the center of the papillary surface, while other papillae had small secondary papillary grooves arising from the center of the papilla. Taste buds were located in the medial and lateral epithelium of both primary and secondary grooves as well as in the dome epithelium. In donkey, two papillae were frequently observed around the midline of the tongue root, and an additional papilla was found occasionally in the middle and associated with secondary papilla. In buffalo, several papillae were relatively small and variable in shape. With SEM, small ridges and grooves were found in the papillae of donkey and buffalo. In both species, taste buds were constantly observed along the medial wall epithelium, but no taste buds were found in the lateral wall. We conclude that the vallate papillae exhibited peculiar characteristics, which are species specific and might have a correlation with the variable feeding habits among these animals. PMID 24242871


Bone morphogenetic protein-2 functions as a negative regulator in the differentiation of myoblasts, but not as an inducer for the formations of cartilage and bone in mouse embryonic tongue

BMC Dev Biol. 2011 Jul 7;11(1):44. [Epub ahead of print]

Aoyama K, Yamane A, Suga T, Suzuki E, Fukui T, Nakamura Y.

Abstract ABSTRACT: BACKGROUND: In vitro studies using the myogenic cell line C2C12 demonstrate that bone morphogenetic protein-2 (BMP-2) converts the developmental pathway of C2C12 from a myogenic cell lineage to an osteoblastic cell lineage. Further, in vivo studies using null mutation mice demonstrate that BMPs inhibit the specification of the developmental fate of myogenic progenitor cells. However, the roles of BMPs in the phases of differentiation and maturation in skeletal muscles have yet to be determined. The present study attempts to define the function of BMP-2 in the final stage of differentiation of mouse tongue myoblast. RESULTS: Recombinant BMP-2 inhibited the expressions of markers for the differentiation of skeletal muscle cells, such as myogenin, muscle creatine kinase (MCK), and fast myosin heavy chain (fMyHC), whereas BMP-2 siRNA stimulated such markers. Neither the recombinant BMP-2 nor BMP-2 siRNA altered the expressions of markers for the formation of cartilage and bone, such as osteocalcin, alkaline phosphatase (ALP), collagen II, and collagen X. Further, no formation of cartilage and bone was observed in the recombinant BMP-2-treated tongues based on Alizarin red and Alcian blue stainings. Neither recombinant BMP-2 nor BMP-2 siRNA affected the expression of inhibitor of DNA binding /differentiation 1 (Id1). The ratios of chondrogenic and osteogenic markers relative to glyceraldehyde-3-phosphate dehydrogenase (GAPDH, a house keeping gene) were approximately 1000-fold lower than those of myogenic markers in the cultured tongue. CONCLUSIONS: BMP-2 functions as a negative regulator for the final differentiation of tongue myoblasts, but not as an inducer for the formation of cartilage and bone in cultured tongue, probably because the genes related to myogenesis are in an activation mode, while the genes related to chondrogenesis and osteogenesis are in a silencing mode.

PMID 21736745

2009

Relationship between neural crest cells and cranial mesoderm during head muscle development

Grenier J, Teillet MA, Grifone R, Kelly RG, Duprez D. PLoS One. 2009;4(2):e4381. Epub 2009 Feb 9. PMID: 19198652

In vertebrates, the skeletal elements of the jaw, together with the connective tissues and tendons, originate from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Previous studies have shown that neural crest cells migrate in close association with cranial mesoderm and then circumscribe but do not penetrate the core of muscle precursor cells of the branchial arches at early stages of development, thus defining a sharp boundary between neural crest cells and mesodermal muscle progenitor cells. Tendons constitute one of the neural crest derivatives likely to interact with muscle formation. However, head tendon formation has not been studied, nor have tendon and muscle interactions in the head.

This results show that neural crest cells and muscle progenitor cells are more extensively mixed than previously believed during arch development. In addition, our results show that interactions between muscles and tendons during craniofacial development are similar to those observed in the limb, despite the distinct embryological origin of these cell types in the head.


http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0004381