Difference between revisions of "Talk:Sensory - Smell Development"

From Embryology
(2010)
Line 1: Line 1:
 +
{{Talk Page}}
 +
==2011==
 +
 +
===Loss-of-function mutations in sodium channel Nav1.7 cause anosmia===
 +
 +
Nature. 2011 Apr 14;472(7342):186-90. Epub 2011 Mar 23.
 +
 +
Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F.
 +
Source
 +
Department of Physiology, University of Saarland School of Medicine, 66421 Homburg, Germany.
 +
 +
Abstract
 +
Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell.
 +
Comment in
 +
Nature. 2011 Apr 14;472(7342):173-4.
 +
 +
PMID 21441906
 +
 
==2010==
 
==2010==
  

Revision as of 12:31, 20 August 2011

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2019, October 14) Embryology Sensory - Smell Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Sensory_-_Smell_Development

2011

Loss-of-function mutations in sodium channel Nav1.7 cause anosmia

Nature. 2011 Apr 14;472(7342):186-90. Epub 2011 Mar 23.

Weiss J, Pyrski M, Jacobi E, Bufe B, Willnecker V, Schick B, Zizzari P, Gossage SJ, Greer CA, Leinders-Zufall T, Woods CG, Wood JN, Zufall F. Source Department of Physiology, University of Saarland School of Medicine, 66421 Homburg, Germany.

Abstract Loss of function of the gene SCN9A, encoding the voltage-gated sodium channel Na(v)1.7, causes a congenital inability to experience pain in humans. Here we show that Na(v)1.7 is not only necessary for pain sensation but is also an essential requirement for odour perception in both mice and humans. We examined human patients with loss-of-function mutations in SCN9A and show that they are unable to sense odours. To establish the essential role of Na(v)1.7 in odour perception, we generated conditional null mice in which Na(v)1.7 was removed from all olfactory sensory neurons. In the absence of Na(v)1.7, these neurons still produce odour-evoked action potentials but fail to initiate synaptic signalling from their axon terminals at the first synapse in the olfactory system. The mutant mice no longer display vital, odour-guided behaviours such as innate odour recognition and avoidance, short-term odour learning, and maternal pup retrieval. Our study creates a mouse model of congenital general anosmia and provides new strategies to explore the genetic basis of the human sense of smell. Comment in Nature. 2011 Apr 14;472(7342):173-4.

PMID 21441906

2010

The cell biology of smell

J Cell Biol. 2010 Nov 1;191(3):443-52.

DeMaria S, Ngai J.

Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA. Abstract The olfactory system detects and discriminates myriad chemical structures across a wide range of concentrations. To meet this task, the system utilizes a large family of G protein-coupled receptors-the odorant receptors-which are the chemical sensors underlying the perception of smell. Interestingly, the odorant receptors are also involved in a number of developmental decisions, including the regulation of their own expression and the patterning of the olfactory sensory neurons' synaptic connections in the brain. This review will focus on the diverse roles of the odorant receptor in the function and development of the olfactory system.

PMID: 21041441 http://www.ncbi.nlm.nih.gov/pubmed/21041441

http://jcb.rupress.org/content/191/3/443.long

Anosmia Predicts Hypogonadotropic Hypogonadism in CHARGE Syndrome

Bergman JE, Bocca G, Hoefsloot LH, Meiners LC, van Ravenswaaij-Arts CM. J Pediatr. 2010 Sep 29.


OBJECTIVE: To test the hypothesis that a smell test could predict the occurrence of hypogonadotropic hypogonadism (HH) in patients with CHARGE syndrome, which is a variable combination of ocular coloboma, heart defects, choanal atresia, retardation of growth/development, genital hypoplasia, and ear anomalies or hearing loss caused by mutations in the CHD7 (chromodomain helicase DNA binding protein 7) gene.

STUDY DESIGN: We performed endocrine studies and smell testing (University of Pennsylvania Smell Identification Test) in 35 adolescent patients with molecularly confirmed CHARGE syndrome.

RESULTS: Complete data on smell and puberty were available for 15 patients; 11 patients had both anosmia and HH, whereas 4 patients had normosmia/hyposmia and spontaneous puberty. In addition, 7 boys were highly suspected of having HH (they were too young for definite HH diagnosis, but all had cryptorchidism, micropenis, or both) and had anosmia. The type of CHD7 mutation could not predict HH because a father and daughter with the same CHD7 mutation were discordant for HH and anosmia.

CONCLUSION: Anosmia and HH were highly correlated in our cohort, and therefore smell testing seems to be an attractive method for predicting the occurrence of HH in patients with CHARGE syndrome. The use of this test could prevent delay of hormonal pubertal induction, resulting in an age-appropriate puberty.

PMID: 20884005 http://www.ncbi.nlm.nih.gov/pubmed/20884005