Talk:Respiratory System - Upper Respiratory Tract

From Embryology
Revision as of 12:46, 12 February 2012 by S8600021 (talk | contribs) (→‎2012)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 28) Embryology Respiratory System - Upper Respiratory Tract. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Respiratory_System_-_Upper_Respiratory_Tract

2012

Prenatal Development of the Maxillary Sinus: A Perspective for Paranasal Sinus Surgery

Otolaryngol Head Neck Surg. 2012 Jan 20. [Epub ahead of print]

Nuñez-Castruita A, López-Serna N, Guzmán-López S. Source Department of Embryology, School of Medicine of the Universidad Autónoma de Nuevo León, Monterrey, México. Abstract Objective. To review the prenatal development of the maxillary sinus under the perspective of the sinus surgery.Study Design. Cross-sectional study.Setting. Basic embryology laboratory.Subjects and Methods. Morphometry and morphology of the maxillary sinus and its ostium were studied under stereomicroscopy in 100 human fetuses from the 9th to the 37th week. Fetuses were obtained from the Fetal Collection of the School of Medicine of the Universidad Autónoma de Nuevo León. Approval was granted by the Ethics Committee. Statistics were applied.Results. The maxillary sinus begins its development at the 10th week. On the 37th week, the anterior-posterior diameter has a mean of 4.36 mm; ossification of the medial wall was absent, and the floor was located below the attachment of the inferior turbinate. Septa and recesses were temporarily observed. Some variations in shape were observed; however, only the oval shape persisted. Maxillary sinus hypoplasia was not found, although asymmetry was present in 30% of cases. The ostium was located at the anterior third of the ethmoid infundibulum; its final dimensions were 1.96 mm in length and 0.44 mm in width. The mean length between the ostium to the lamina papyracea and nasolacrimal duct was 1 mm. One case of double maxillary sinus was observed. Significant difference between the variables, in accordance with the age, was found (P = .02).Conclusion. Knowledge of prenatal development of the maxillary sinus improves the perspective of the sinus surgeon and helps the understanding of postnatal anatomy, especially in children.

PMID 22267494

2011

Computed tomography measurements of different dimensions of maxillary and frontal sinuses

BMC Med Imaging. 2011 Apr 5;11:8.

Sahlstrand-Johnson P, Jannert M, Strömbeck A, Abul-Kasim K. Source Department of Oto-Rhino-Laryngology, Faculty of Medicine, Lund University, Skåne University Hospital, Malmö, Sweden. pernilla.sahlstrand_johnson@med.lu.se

Abstract BACKGROUND: We have previously proposed the use of Doppler ultrasound to non-invasively stage sinus infection, as we showed that acoustic streaming could be generated in nonpurulent sinus secretions and helped to distinguish it from mucopurulent sinus secretions. In order to continue this development of a clinically applicable Doppler equipment, we need to determine different dimensions of the paranasal sinuses, especially the thickness of the anterior wall of the maxillary sinus (at the canine fossa). To the best of our knowledge, this is the first report on the thickness of the canine fossa. This study aimed to (a) estimate different dimensions of the maxillary and frontal sinuses measured on computed tomography (CT) of the head, (b) define cut-off values for the normal upper and lower limits of the different measured structures, (c) determine differences in age, side and gender, (d) compare manually and automatically estimated maxillary sinuses volumes, and (e) present incidental findings in the paranasal sinuses among the study patients. METHODS: Dimensions of 120 maxillary and frontal sinuses from head CTs were measured independently by two radiologists. RESULTS: The mean value of the maxillary sinus volume was 15.7±5.3 cm3 and significantly larger in males than in females (P=0.004). There was no statistically significant correlation between the volume of maxillary sinuses with age or side. The mean value of the bone thickness at the canine fossa was 1.1±0.4 mm. The automatically estimated volume of the maxillary sinuses was 14-17% higher than the calculated volume. There was high interobserver agreement with regard to the different measurements performed in this study. Different types of incidental findings of the paranasal sinuses were found in 35% of the patients. CONCLUSION: We presented different dimensions of the maxillary and frontal sinuses on CTs. We believe that our data are necessary for further development of a clinically applicable Doppler equipment for staging rhinosinusitis.

PMID 21466703

2010

Nasal septum morphology in human fetuses in computed tomography images

Eur J Med Res. 2010 Nov 4;15 Suppl 2:202-5.


Teul I, Slawinski G, Lewandowski J, Dzieciolowska-Baran E, Gawlikowska-Sroka A, Czerwinski F. Source Department of Anatomy, Pomeranian Medical University, Szczecin, Poland. teul@life.pl Abstract OBJECTIVES: Nasal septum deformation (NSD) may cause breathing dysfunction. The reason for a septal deviation is the developmental anomaly in growth of the elastic septum or its skeleton. Such a type of deviation is called physiological. Some deviations can result from the prenatal trauma. The aim of the work was the analysis of the anatomy of the nasal cavity with a special interest focused on the nasal septum and its deviation. MATERIAL AND METHODS: The nasal cavity with its bones and septum was analyzed in CT images of 105 spontaneously aborted fetuses (57 males and 48 females) aged 12 and 40 weeks of gestation. We attempted to assess the morphometric development of the nasal cavity with tomographic scanning methods and to detect anatomical variations. RESULTS: In 15 (14.3%) fetuses, NSD were detected on radiological sections. The angle between the virtual line from the sphenoid sinus ostium through limen nasi and the horizontal plane was 33.6 ±2.3°, on average. CONCLUSIONS: NSD may already be found in fetuses. The observation of the nasal cavity development enables to evaluate the growth and symmetry of the nasal septum and to foretell predispositions for dysfunction in the upper respiratory tract.

PMID 21147652

2006

The upper airway: congenital malformations

Paediatr Respir Rev. 2006;7 Suppl 1:S260-3. Epub 2006 Jun 6.


Daniel SJ. Source Department of Otolaryngology, Head and Neck Surgery, McGill University Health Centre, Montreal Children's Hospital, 2300 Tupper Street, B-240, Montreal, Quebec, Canada H3H 1P3. sam.daniel@muhc.mcgill.ca

Abstract

The upper airway extends from the nasal aperture to the subglottis and can be the site of multiple types of congenital malformations leading to anatomical or functional obstruction. This can cause severe respiratory distress. Newborns are obligate nasal breathers; therefore nasal obstruction can lead to airway compromise and respiratory distress. The etiologies are varied and include, choanal atresia, pyriform aperture stenosis, and rarely tumors such as glioma, encephalocele, teratoma, or dermoid. More common upper airway congenital anomalies include laryngomalacia, vocal cord paralysis, and subglottic stenosis. Laryngolmalacia is the most common congenital laryngeal anomaly. Inspiratory stridor often does not present until two weeks after birth and resolves by 18 months of age. Most cases are managed with watchful waiting. Severe cases require a surgical intervention. Bilateral vocal cord paralysis is usually idiopathic. In certain cases, paralysis may occur secondary to central nervous system abnormality including Arnold-Chiari malformation, cerebral palsy, hydrocephalus, myelomeningocele, spina bifida, or hypoxia. Severe cases may necessitate endotracheal intubation and tracheostomy. Congenital subglottic stenosis is the third most common laryngeal anomaly. It is defined as a diameter of less than 4mm of the cricoid region in a full-term infant, and less than 3mm in a premature infant. This condition is the most common laryngeal anomaly that requires tracheotomy in newborns. Laryngotracheoplasty may be required to achieve decanulation. Knowledge of the upper airway embryological development and congenital anomalies is off prime importance in assessing the newborn with respiratory distress. In most cases flexible endoscopy establishes the diagnosis. Management is tailored to each condition and its degree of severity.

PMID 16798587


2004

Development, structure and function of the upper airways

Paediatr Respir Rev. 2004 Mar;5(1):2-8.

Pohunek P. Source 2nd Paediatric Department, Division of Paediatric Pulmonology, University Hospital Motol, V Uvalu 84, 150 06 Praha 5, Czech Republic. petr.pohunek@lfmotol.cuni.cz Abstract The upper airways play an essential role in the conduction of air into the lungs, and influence the properties of the inhaled air by both the anatomical structure and the functional properties of the mucosa, cartilages and neural and lymphatic tissues. The upper airways also play an important role in the protection of the lower airways, in the formation of the sound and host the sense of olfaction. Main events in the development of the upper airways happen during early embryonic periods. Postnatally, the growth of the airways follows the growth of the skeleton of the head and of the neck and thorax. Growth is accelerated mainly during the first 2 years of life; thereafter, it linearly follows the growth of the body. For a profound understanding of the function of the upper airways, it is important to understand the main developmental events during both prenatal and postnatal periods.

PMID 15222948