Talk:Renal System Development: Difference between revisions

From Embryology
Line 1: Line 1:
==2010==
==2010==
===Kidney development: two tales of tubulogenesis===
Curr Top Dev Biol. 2010;90:193-229.
Little M, Georgas K, Pennisi D, Wilkinson L.
Source
Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia.
Abstract
The mammalian kidney may well be one of the most complex organs of postnatal life. Each adult human kidney contains on average more than one million functional filtration units, the nephrons, residing within a specialized cellular interstitium. Each kidney also contains over 25 distinct cell types, each of which must be specifically aligned with respect to each other to ensure both normal development and ultimately, normal renal function. Despite this complexity, the development of the kidney can be simplistically described as the coordinate formation of two distinct sets of tubules. These tubules develop cooperatively with each other in time and space, yet represent two distinct but classical types of tubulogenesis. The first of these tubules, the ureteric bud, forms as an outgrowth of another epithelial tube, the nephric duct, and undergoes extensive branching morphogenesis to create the collecting system of the kidney. The second tubules are the nephrons themselves which arise via a mesenchyme-to-epithelial transition induced by the first set of tubules. These tubules never branch, but must elongate to become intricately patterned and functionally segmented tubules. The molecular drivers for these two tales of tubulogenesis include many gene families regulating tubulogenesis and branching morphogenesis in other organs; however, the individual players and codependent interrelationships between a branched and non-branched tubular network make organogenesis in the kidney unique. Here we review both what is known and remains to be understood in kidney tubulogenesis.
Copyright 2010 Elsevier Inc. All rights reserved.
PMID: 20691850
http://www.ncbi.nlm.nih.gov/pubmed/20691850


===Kidney development in the absence of Gdnf and Spry1 requires Fgf10===
===Kidney development in the absence of Gdnf and Spry1 requires Fgf10===

Revision as of 14:40, 19 July 2011

2010

Kidney development: two tales of tubulogenesis

Curr Top Dev Biol. 2010;90:193-229.

Little M, Georgas K, Pennisi D, Wilkinson L. Source Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia.

Abstract

The mammalian kidney may well be one of the most complex organs of postnatal life. Each adult human kidney contains on average more than one million functional filtration units, the nephrons, residing within a specialized cellular interstitium. Each kidney also contains over 25 distinct cell types, each of which must be specifically aligned with respect to each other to ensure both normal development and ultimately, normal renal function. Despite this complexity, the development of the kidney can be simplistically described as the coordinate formation of two distinct sets of tubules. These tubules develop cooperatively with each other in time and space, yet represent two distinct but classical types of tubulogenesis. The first of these tubules, the ureteric bud, forms as an outgrowth of another epithelial tube, the nephric duct, and undergoes extensive branching morphogenesis to create the collecting system of the kidney. The second tubules are the nephrons themselves which arise via a mesenchyme-to-epithelial transition induced by the first set of tubules. These tubules never branch, but must elongate to become intricately patterned and functionally segmented tubules. The molecular drivers for these two tales of tubulogenesis include many gene families regulating tubulogenesis and branching morphogenesis in other organs; however, the individual players and codependent interrelationships between a branched and non-branched tubular network make organogenesis in the kidney unique. Here we review both what is known and remains to be understood in kidney tubulogenesis.

Copyright 2010 Elsevier Inc. All rights reserved.

PMID: 20691850 http://www.ncbi.nlm.nih.gov/pubmed/20691850

Kidney development in the absence of Gdnf and Spry1 requires Fgf10

PLoS Genet. 2010 Jan 15;6(1):e1000809.

Michos O, Cebrian C, Hyink D, Grieshammer U, Williams L, D'Agati V, Licht JD, Martin GR, Costantini F.

Department of Genetics and Development, Columbia University, New York, New York, USA.

Abstract GDNF signaling through the Ret receptor tyrosine kinase (RTK) is required for ureteric bud (UB) branching morphogenesis during kidney development in mice and humans. Furthermore, many other mutant genes that cause renal agenesis exert their effects via the GDNF/RET pathway. Therefore, RET signaling is believed to play a central role in renal organogenesis. Here, we re-examine the extent to which the functions of Gdnf and Ret are unique, by seeking conditions in which a kidney can develop in their absence. We find that in the absence of the negative regulator Spry1, Gdnf, and Ret are no longer required for extensive kidney development. Gdnf-/-;Spry1-/- or Ret-/-;Spry1-/- double mutants develop large kidneys with normal ureters, highly branched collecting ducts, extensive nephrogenesis, and normal histoarchitecture. However, despite extensive branching, the UB displays alterations in branch spacing, angle, and frequency. UB branching in the absence of Gdnf and Spry1 requires Fgf10 (which normally plays a minor role), as removal of even one copy of Fgf10 in Gdnf-/-;Spry1-/- mutants causes a complete failure of ureter and kidney development. In contrast to Gdnf or Ret mutations, renal agenesis caused by concomitant lack of the transcription factors ETV4 and ETV5 is not rescued by removing Spry1, consistent with their role downstream of both RET and FGFRs. This shows that, for many aspects of renal development, the balance between positive signaling by RTKs and negative regulation of this signaling by SPRY1 is more critical than the specific role of GDNF. Other signals, including FGF10, can perform many of the functions of GDNF, when SPRY1 is absent. But GDNF/RET signaling has an apparently unique function in determining normal branching pattern. In contrast to GDNF or FGF10, Etv4 and Etv5 represent a critical node in the RTK signaling network that cannot by bypassed by reducing the negative regulation of upstream signals.

PMID: 20084103 http://www.ncbi.nlm.nih.gov/pubmed/20084103

Hs2st mediated kidney mesenchyme induction regulates early ureteric bud branching

Dev Biol. 2010 Mar 15;339(2):354-65. Epub 2010 Jan 6.

Shah MM, Sakurai H, Sweeney DE, Gallegos TF, Bush KT, Esko JD, Nigam SK.

Department of Medicine, University of California, San Diego, CA 92093-0693, USA.

Abstract

Heparan sulfate proteoglycans (HSPGs) are central modulators of developmental processes likely through their interaction with growth factors, such as GDNF, members of the FGF and TGFbeta superfamilies, EGF receptor ligands and HGF. Absence of the biosynthetic enzyme, heparan sulfate 2-O-sulfotransferase (Hs2st) leads to kidney agenesis. Using a novel combination of in vivo and in vitro approaches, we have reanalyzed the defect in morphogenesis of the Hs2st(-)(/)(-) kidney. Utilizing assays that separately model distinct stages of kidney branching morphogenesis, we found that the Hs2st(-/-) UB is able to undergo branching and induce mesenchymal-to-epithelial transformation when recombined with control MM, and the isolated Hs2st null UB is able to undergo branching morphogenesis in the presence of exogenous soluble pro-branching growth factors when embedded in an extracellular matrix, indicating that the UB is intrinsically competent. This is in contrast to the prevailing view that the defect underlying the renal agenesis phenotype is due to a primary role for 2-O sulfated HS in UB branching. Unexpectedly, the mutant MM was also fully capable of being induced in recombination experiments with wild-type tissue. Thus, both the mutant UB and mutant MM tissue appear competent in and of themselves, but the combination of mutant tissues fails in vivo and, as we show, in organ culture. We hypothesized a 2OS-dependent defect in the mutual inductive process, which could be on either the UB or MM side, since both progenitor tissues express Hs2st. In light of these observations, we specifically examined the role of the HS 2-O sulfation modification on the morphogenetic capacity of the UB and MM individually. We demonstrate that early UB branching morphogenesis is not primarily modulated by factors that depend on the HS 2-O sulfate modification; however, factors that contribute to MM induction are markedly sensitive to the 2-O sulfation modification. These data suggest that key defect in Hs2st null kidneys is the inability of MM to undergo induction either through a failure of mutual induction or a primary failure of MM morphogenesis. This results in normal UB formation but affects either T-shaped UB formation or iterative branching of the T-shaped UB (possibly two separate stages in collecting system development dependent upon HS). We discuss the possibility that a disruption in the interaction between HS and Wnts (e.g. Wnt 9b) may be an important aspect of the observed phenotype. This appears to be the first example of a defect in the MM preventing advancement of early UB branching past the first bifurcation stage, one of the limiting steps in early kidney development.

Copyright 2010 Elsevier Inc. All rights reserved.

PMID: 20059993 http://www.ncbi.nlm.nih.gov/pubmed/20059993

A novel, low-volume method for organ culture of embryonic kidneys that allows development of cortico-medullary anatomical organization.

Sebinger DD, Unbekandt M, Ganeva VV, Ofenbauer A, Werner C, Davies JA. PLoS One. 2010 May 10;5(5):e10550.

http://www.ncbi.nlm.nih.gov/pubmed/20479933 PMID: 20479933

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0010550

2009

Kidney development: from ureteric bud formation to branching morphogenesis

Curr Opin Genet Dev. 2009 Oct;19(5):484-90. Epub 2009 Oct 14.

Michos O.

Department of Genetics and Development, Columbia University Medical Center, HHSC1416, New York, NY 10032, USA. om2142@columbia.edu

Abstract Epithelial branching morphogenesis is critical to the formation of various organs such as the vasculature, mammary glands, lungs, and kidneys in vertebrate embryos. One fascinating aspect of branching morphogenesis is to understand how a simple epithelial tube grows by reiterative branching to form a complex epithelial tree structure. Recent studies combining mouse genetics and chimeric analysis with live imaging have uncovered the molecular networks and interactions that govern kidney branching morphogenesis. This review focuses on ureteric bud (UB) formation and epithelial branching during kidney development. The invasion of the metanephric mesenchyme by the UB is a fundamental step toward establishing the cyto-architecture of the kidney and determining the number of nephrons, which form the filtration units of the adult kidney.


PMID: 19828308 http://www.ncbi.nlm.nih.gov/pubmed/19828308

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783241

--Mark Hill 07:20, 8 April 2011 (EST) Good molecular development overview figures.

Cell and molecular biology of kidney development

Reidy KJ, Rosenblum ND. Semin Nephrol. 2009 Jul;29(4):321-37. Review. PMID: 19615554 http://www.ncbi.nlm.nih.gov/pubmed/19615554

Semin Nephrol. 2009 Jul;29(4):321-37. Cell and molecular biology of kidney development. Reidy KJ, Rosenblum ND.

Department of Pediatrics/Division of Pediatric Nephrology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, 3415 Bainbridge Ave, Bronx, NY 10467, USA. Abstract Abnormalities of kidney and urinary tract development are the most common cause of end-stage kidney failure in childhood in the United States. Over the past 20 years, the advent of mutant and transgenic mice and the manipulation of gene expression in other animal models has resulted in major advances in identification of the cellular and molecular mechanisms that direct kidney morphogenesis, providing insights into the pathophysiology of renal and urologic anomalies. This review focuses on the molecular mechanisms that define kidney progenitor cell populations, induce nephron formation within the metanephric mesenchyme, initiate and organize ureteric bud branching, and participate in terminal differentiation of the nephron. Highlighted are common signaling pathways that function at multiple stages during kidney development, including signaling via Wnts, bone morphogenic proteins, fibroblast growth factor, sonic hedgehog, RET/glial cell-derived neurotrophic factor, and notch pathways. Also emphasized are the roles of transcription factors Odd1, Eya1, Pax2, Lim1, and WT-1 in directing renal development. Areas requiring future investigation include the factors that modulate signaling pathways to provide temporal and site-specific effects. The evolution of our understanding of the cellular and molecular mechanisms of kidney development may provide methods for improved diagnosis of renal anomalies and, hopefully, targets for intervention for this common cause of childhood end-stage kidney disease.

PMID: 19615554

How does the ureteric bud branch?

J Am Soc Nephrol. 2009 Jul;20(7):1465-9. Epub 2008 Dec 3.

Nigam SK, Shah MM.

Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA. snigam@ucsd.edu Abstract Many genes that modulate kidney development have been identified; however, the molecular interactions that direct arborization of the ureteric bud (UB) remain incompletely understood. This article discusses how "systems" approaches may shed light on the structure of the gene network during UB branching morphogenesis and the mechanisms involved in the formation of a branched collecting system from a straight epithelial tube in the context of a stage model. In vitro and genetic studies suggest that the stages seem to be governed by a conserved network of genes that establish a "tip-stalk generator"; these genes sustain iterative UB branching tubulogenesis through minimal alterations in the network architecture as a budding system shifts to one that autocatalytically branches through budding. The differential expression of stage-specific positive and inhibitory factors in the mesenchyme, likely presented in the context of heparan sulfate proteoglycans, and effector molecules in the epithelium seems to regulate advancement between stages; similar principles may apply to other branching epithelia such as the lung, salivary gland, pancreas, mammary gland, and prostate. Active mesenchymal interactions with the UB seem to govern vectorial arborization and tapering of the collecting system and its terminal differentiation. Cessation of branching correlates with induction of mesenchyme as well as local extracellular matrix changes. Perturbations of these mechanisms and/or single-nucleotide polymorphisms in genes regulating UB branching may predispose to a variety of renal diseases (e.g., hypertension and chronic kidney disease) by altering nephron number. Decentralization of the gene-protein interaction network may explain the relative paucity of branching phenotypes in mutant mice and in human disease.

PMID: 19056872

2007

The spectrum of podocytopathies: a unifying view of glomerular diseases

Kidney Int. 2007 Jun;71(12):1205-14. Epub 2007 Apr 4.

Wiggins RC. Source Nephrology Division, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109-0676, USA. rwiggins@umich.edu

Abstract

Glomerular diseases encompass a broad array of clinicopathologically defined syndromes which together account for 90% of end-stage kidney disease costing $20 billion per annum to treat in the United States alone. Recent insights have defined the central role of the podocyte as both the regulator of glomerular development as well as the determinant of progression to glomerulosclerosis. We can now place all glomerular diseases within this spectrum of podocytopathies with predictable outcomes based on podocyte biology impacted by temporal, genetic, and environmental cues. This simplified construct is particularly useful to rationalize clinical effort toward podocyte preservation and prevention of progression as well as to focus basic research effort on understanding podocyte biology and for clinical research toward development of practical monitoring strategies for podocyte injury, dysfunction, and loss.

PMID: 17410103 http://www.ncbi.nlm.nih.gov/pubmed/17410103

Bladder

Endodermal origin of bladder trigone inferred from mesenchymal-epithelial interaction

J Urol. 2010 Jan;183(1):386-91.

Tanaka ST, Ishii K, Demarco RT, Pope JC 4th, Brock JW 3rd, Hayward SW.

Department of Urologic Surgery, Monroe Carell, Jr Children's Hospital at Vanderbilt, Nashville, Tennessee 37232-9820, USA. stacy.tanaka@vanderbilt.edu

Abstract PURPOSE: In the classic view of bladder development the trigone originates from the mesoderm derived wolffian ducts while the remainder of the bladder originates from the endoderm derived urogenital sinus. Recent molecular developmental studies have questioned the veracity of this received wisdom, suggesting an endodermal origin for the trigone. To shed further light on this issue we observed mesenchymal-epithelial interactions between trigone epithelium and fetal urogenital sinus mesenchyma to infer the trigonal germ layer of origin.

MATERIALS AND METHODS: Mouse trigone epithelium was recombined with fetal rat urogenital sinus mesenchyma in tissue recombinant grafts that were placed beneath the renal capsule of athymic mouse hosts. Grafts were harvested at 4 weeks. Control grafts with bladder dome and ureteral epithelium were also examined. Tissues were evaluated with hematoxylin and eosin, and Hoechst dye 33258 to confirm cell species origin. Immunohistochemistry was done with androgen receptor, broad spectrum uroplakin, dorsolateral prostate secretions and seminal vesicle secretions to differentiate prostatic and seminal vesicle differentiation.

RESULTS: Grafts of mouse trigone epithelium with fetal rat urogenital sinus mesenchyma yielded epithelial tissue that stained for dorsolateral prostate secretions but not for seminal vesicle secretions. Control grafts of bladder dome epithelium yielded the expected endodermal prostate differentiation. Control grafts of ureteral epithelium yielded the expected mesodermal seminal vesicle differentiation.

CONCLUSIONS: The consistent finding of prostatic epithelium in tissue recombinants of trigone epithelium and fetal urogenital sinus mesenchyma reinforces the hypothesis that the trigone is derived from the endoderm and not from the mesoderm, as commonly accepted.

PMID: 19914648 http://www.ncbi.nlm.nih.gov/pubmed/19914648

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794964

http://www.jurology.com/article/S0022-5347(09)02320-9/abstract