Talk:Rabbit Development: Difference between revisions

From Embryology
No edit summary
Line 9: Line 9:


==2012==
==2012==
===Rabbit as a reproductive model for human health===
Reproduction. 2012 Jul;144(1):1-10. doi: 10.1530/REP-12-0091. Epub 2012 May 10.
Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V.
Source
Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany. bernd.fischer@medizin.uni-halle.de
Abstract
The renaissance of the laboratory rabbit as a reproductive model for human health is closely related to the growing evidence of periconceptional metabolic programming and its determining effects on offspring and adult health. Advantages of rabbit reproduction are the exact timing of fertilization and pregnancy stages, high cell numbers and yield in blastocysts, relatively late implantation at a time when gastrulation is already proceeding, detailed morphologic and molecular knowledge on gastrulation stages, and a hemochorial placenta structured similarly to the human placenta. To understand, for example, the mechanisms of periconceptional programming and its effects on metabolic health in adulthood, these advantages help to elucidate even subtle changes in metabolism and development during the pre- and peri-implantation period and during gastrulation in individual embryos. Gastrulation represents a central turning point in ontogenesis in which a limited number of cells program the development of the three germ layers and, hence, the embryo proper. Newly developed transgenic and molecular tools offer promising chances for further scientific progress to be attained with this reproductive model species.
PMID 22580370
http://www.reproduction-online.org/content/144/1/1.long
===Rabbit whole embryo culture===
===Rabbit whole embryo culture===
Methods Mol Biol. 2012;889:239-52.
Methods Mol Biol. 2012;889:239-52.

Revision as of 23:20, 1 December 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 24) Embryology Rabbit Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Rabbit_Development

10 Most Recent Papers

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Rabbit+Embryo

<pubmed limit=10>Rabbit Development</pubmed>


2012

Rabbit as a reproductive model for human health

Reproduction. 2012 Jul;144(1):1-10. doi: 10.1530/REP-12-0091. Epub 2012 May 10.

Fischer B, Chavatte-Palmer P, Viebahn C, Navarrete Santos A, Duranthon V. Source Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, D-06097 Halle (Saale), Germany. bernd.fischer@medizin.uni-halle.de

Abstract

The renaissance of the laboratory rabbit as a reproductive model for human health is closely related to the growing evidence of periconceptional metabolic programming and its determining effects on offspring and adult health. Advantages of rabbit reproduction are the exact timing of fertilization and pregnancy stages, high cell numbers and yield in blastocysts, relatively late implantation at a time when gastrulation is already proceeding, detailed morphologic and molecular knowledge on gastrulation stages, and a hemochorial placenta structured similarly to the human placenta. To understand, for example, the mechanisms of periconceptional programming and its effects on metabolic health in adulthood, these advantages help to elucidate even subtle changes in metabolism and development during the pre- and peri-implantation period and during gastrulation in individual embryos. Gastrulation represents a central turning point in ontogenesis in which a limited number of cells program the development of the three germ layers and, hence, the embryo proper. Newly developed transgenic and molecular tools offer promising chances for further scientific progress to be attained with this reproductive model species.

PMID 22580370

http://www.reproduction-online.org/content/144/1/1.long

Rabbit whole embryo culture

Methods Mol Biol. 2012;889:239-52.

Marshall VA, Carney EW. Source Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, USA.

Abstract

Although the rabbit is used extensively in developmental toxicity testing, relatively little is known about the fundamental developmental biology of this species let alone mechanisms underlying developmental toxicity. This paucity of information about the rabbit is partly due to the historic lack of whole embryo culture (WEC) methods for the rabbit, which have only been made available fairly recently. In rabbit WEC, early somite stage embryos (gestation day 9) enclosed within an intact amnion and attached to the visceral yolk sac are dissected from maternal tissues and placed in culture for up to 48 h at approximately 37°C and are continuously exposed to an humidified gas atmosphere mixture in a rotating culture system. During this 48 h culture period, major phases of organogenesis can be studied including cardiac looping and segmentation, neural tube closure, and development of anlagen of the otic system, eyes and craniofacial structures, somites and early phases of limb development (up to bud stage), as well as expansion and closure of the visceral yolk sac around the embryo. Following completion of the culture period, embryos are evaluated based on several growth and development parameters and also are assessed for morphological abnormalities. The ability to sustain embryo development independent of the maternal system allows for exposure at precise development stages providing the opportunity study the direct action of a teratogen or one of its metabolites on the developing embryo. Rabbit WEC is perhaps most useful when used in conjunction with rodent WEC methods to investigate species-specific mechanisms of developmental toxicity.

PMID 22669668

2009

Continuous observation of rabbit preimplantation embryos in vitro by using a culture device connected to a microscope

J Am Assoc Lab Anim Sci. 2009 Jan;48(1):52-6.

Sultana F, Hatori M, Shimozawa N, Ebisawa T, Sankai T.

Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Tsukuba, Ibaraki, Japan. Abstract We developed a compact culture device that maintains developing embryos in vitro under constant temperature and CO(2) concentration. Using this device, we cultured rabbit embryos from the pronuclear stage to the hatched blastocyst stage and recorded their development digitally for 7 d. Recorded images were converted to a movie, and the developmental movement of individual embryos was analyzed. With this culture system, we can observe embryonic development in a suitable environment continuously for several days; similar long-term observation is not possible in the conventional system. The proportion of embryos that developed from the pronuclear stage to the blastocyst stage was the same in the new system (73.1%; 38 of 52) as in the conventional (control) system (77.6%; 38 of 49). Compaction of embryos occurred from the 8-cell to the morula stage at 32.5 +/- 0.71 h after insemination. The time of blastocyst formation (77.2 +/- 3.2 h after insemination) varied somewhat between embryos. Average hatching time was 98.7 +/- 4.4 h after mating. Therefore, the cleavage, blastomere movement, and hatching processes of blastocysts can be followed clearly and recorded by using this new culture system.

PMID: 19245751

2008

Isolation and culture of rabbit primordial germ cells

J Reprod Dev. 2008 Oct;54(5):352-7. Epub 2008 Jul 16.

Kakegawa R, Teramura T, Takehara T, Anzai M, Mitani T, Matsumoto K, Saeki K, Sagawa N, Fukuda K, Hosoi Y.

Graduate School of Biology-Oriented Science and Technology, Kinki University, Wakayama, Japan. Abstract Primordial germ cells (PGCs) are embryonic precursors of the gametes of adult animals and are considered stem cells of the germline. Since their proliferation in vitro correlates well with the schedule of developmental changes in vivo, they might be interesting research tools for genomic imprinting, germ-cell tumors and fertility. Furthermore, once primordial germ cells are separated and placed on a feeder layer with cytokines, they become cultured pluripotent cell lines called embryonic germ (EG) cells. EG cells share several important characteristics with embryonic stem (ES) cells as they can also contribute to the germ line of chimeras. To investigate the characteristics of PGCs and establish rabbit EG (rEG) cells, we cultured rabbit PGCs (rPGCs) in vitro with various combinations of leukemia inhibitory factor (LIF), basic fibroblast growth factor (bFGF) and forskolin on inactivated mouse embryonic fibroblast (MEF) feeder layers. The present study found PGC proliferation in early cultures and induction of rEG-like colonies. These cells expressed pluripotent markers, such as alkaline phosphatase activity, OCT-4, Sox-2 and SSEA-1, in the undifferentiated state; however, the cells did not develop into a teratoma when injected into the kidney capsules of SCID mice, although the restricted differentiation potentials to neural cells were determined via embryoid body formation. From these characteristics and further characterization of the germ stem cell markers Vasa, SCP-1 and SCP-3, we suggested that these were hybrid cells with characteristics somewhere between PGC and EG cells.

PMID: 18628591

Inositol transport in preimplantation rabbit embryos: effects of embryo stage, sodium, osmolality and metabolic inhibitors

Warner SM, Conlon FV, Kane MT. Reproduction. 2003 Apr;125(4):479-93. Erratum in: Reproduction. 2005 Jan;129(1):128. PMID: 12683919


Neurulation in the rabbit embryo

Peeters MC, Viebahn C, Hekking JW, van Straaten HW. Anat Embryol (Berl). 1998 Mar;197(3):167-75. PMID: 9543335

"Among a broad range of factors and mechanisms involved in the complex process of neurulation a relationship between the curvature of the craniocaudal body axis and rate of neural tube closure has been proposed, but more examples and models are needed to further substantiate the existence of this relationship. This is particularly true for mammals, where marked differences in embryonic body curvature between species exist. The rabbit embryo has virtually no curvature during the main phase of neurulation and is therefore a suitable model, but neurulation is hardly documented in this species. In the present study, therefore, neural tube closure in the rabbit embryo is presented in detail by morphological and morphometrical parameters, as well as from scanning electron microscopic investigations. At the stages of 6-8 somites, the flat neural plate transforms into a V-shaped neural groove, beginning at the rhombo-cervical level. Between the stages of 8 and 9 somites, multiple closure sites occur simultaneously at three levels: at the incipient pros-mesencephalic transition, at the incipient mes-rhombencephalic transition, and at the level of the first pairs of somites. This results in four transient neuropores. The anterior and rhombencephalic neuropores close between the stages of 9-11 somites. The mesencephalic neuropore is very briefly present. The posterior neuropore is the largest and remains longest. Its tapered (cranial) portion closes fast within somite stages 9-10. Subsequently its wide (caudal) portion closes up to a narrow slit, but further closure slows down till full closure is achieved at the 22-somite stage. In comparing rabbit neurulation with that of chick and mouse, the sequence of multiple site closure resembles that of the mouse embryo, but other important aspects of neurulation resemble those of the chick embryo. In contrast to mouse and chick, no time lag between closure at the three closure sites in the rabbit was seen."
  • rabbit embryo has virtually no curvature during the main phase of neurulation
  • 6-8 somite stage - the flat neural plate transforms into a V-shaped neural groove (beginning at rhombo-cervical level)
  • 8 and 9 somite stage - multiple closure sites occur simultaneously at three levels
  1. incipient pros-mesencephalic transition
  2. incipient mes-rhombencephalic transition
  3. level of the first pairs of somites

results in four transient neuropores

  • anterior and rhombencephalic neuropores close between the stages of 9-11 somites.
  • The mesencephalic neuropore is very briefly present.
  • The posterior neuropore is the largest and remains longest. Its tapered (cranial) portion closes fast within somite stages 9-10. Subsequently its wide (caudal) portion closes up to a narrow slit, but further closure slows down till full closure is achieved at the 22-somite stage.

compared with chick and mouse - sequence of multiple site closure resembles that of the mouse embryo, but other important aspects of neurulation resemble those of the chick embryo. In contrast to mouse and chick, no time lag between closure at the three closure sites in the rabbit was seen