Talk:Postnatal - Growth Charts

From Embryology
Revision as of 12:30, 30 June 2011 by S8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 20) Embryology Postnatal - Growth Charts. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Postnatal_-_Growth_Charts

2011

Growth standards of infants with Prader-Willi syndrome

Pediatrics. 2011 Apr;127(4):687-95. Epub 2011 Mar 14.

Butler MG, Sturich J, Lee J, Myers SE, Whitman BY, Gold JA, Kimonis V, Scheimann A, Terrazas N, Driscoll DJ. Source Department of Psychiatry, Kansas University Medical Center, 3901 Rainbow Blvd, MS 4015, Kansas City, KS 66160, USA. mbutler4@kumc.edu Abstract OBJECTIVE: To generate and report standardized growth curves for weight, length, head circumference, weight/length, and BMI for non-growth hormone-treated white infants (boys and girls) with Prader-Willi syndrome (PWS) between 0 and 36 months of age. The goal was to monitor growth and compare data with other infants with PWS.

METHODS: Anthropometric measures (N = 758) were obtained according to standard methods and analyzed from 186 non-growth hormone-treated white infants (108 boys and 78 girls) with PWS between 0 and 36 months of age. Standardized growth curves were developed and the 3rd, 10th, 25th, 50th, 75th, 90th, and 97th percentiles were calculated by using the LMS (refers to λ, μ, and σ) smoothing procedure method for weight, length, head circumference, weight/length, and BMI along with the normative 50th percentile using Centers for Disease Control and Prevention national growth data from 2003. The data were plotted for comparison purposes.

RESULTS: Five separate standardized growth curves (weight, length, head circumference, weight/length, and BMI) representing 7 percentile ranges were developed from 186 non-growth hormone-treated white male and female infants with PWS aged 0 to 36 months, and the normative 50th percentile was plotted on each standardized infant growth curve.

CONCLUSIONS: We encourage the use of these growth standards when examining infants with PWS and evaluating growth for comparison purposes, monitoring for growth patterns, nutritional assessment, and recording responses to growth hormone therapy, commonly used in infants and children with PWS.

PMID: 21402637 http://www.ncbi.nlm.nih.gov/pubmed/21402637

http://pediatrics.aappublications.org/content/127/4/687.long

Genetics of head circumference in infancy: A longitudinal study of Japanese twins

Am J Hum Biol. 2011 May 31. doi: 10.1002/ajhb.21190. [Epub ahead of print]

Silventoinen K, Karvonen M, Sugimoto M, Kaprio J, Dunkel L, Yokoyama Y. Source Population Research Unit, Department of Social Research, University of Helsinki, Helsinki, Finland; Department of Public Health, University of Helsinki, Helsinki, Finland. karri.silventoinen@helsinki.fi.

Abstract

OBJECTIVES: Previous studies have shown strong genetic influence to head circumference (HC), but still little is known on the development of genetic etiology of HC in infancy, especially in non-Caucasian populations. Thus, we decided to analyze the genetics of HC growth in Japanese infants. METHODS: Longitudinal measures of HC were available from birth to 13 months of age in 206 monozygotic and 156 dizygotic complete twin pairs. Genetic modeling for twin data was used. RESULTS: We found only little evidence for sex-specific differences in the genetics of HC and thus analyzed boys and girls together. After 5 months of age the heritability of HC was high, but before that age also a substantial common environmental component was present. Not only strong genetic persistence for HC was found but also a new genetic variation emerged. New environmental variation shared by co-twins affecting HC was found until 3 months of age, and this effect was further transmitted until 1 year of age. CONCLUSIONS: HC and its growth are strongly genetically regulated. Largely, the same genetic factors affect the variation of HC at different ages, and new genetic variation emerged during the first year of life. Knowledge on the genetic component in the variation of HC may help to design tools for defining abnormal growth of HC in population-based screenings for related disorders. Am. J. Hum. Biol., 2011. © 2011 Wiley-Liss, Inc. Copyright © 2011 Wiley-Liss, Inc.

PMID: 21630369 http://www.ncbi.nlm.nih.gov/pubmed/21630369