Talk:Neural System Development: Difference between revisions

From Embryology
Line 124: Line 124:
Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH.
Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH.
J Neurosci. 2008 Nov 19;28(47):12176-82.
J Neurosci. 2008 Nov 19;28(47):12176-82.
PMID: 19020011
PMID 19020011
 
==2004==
 
===3 dimensional modelling of early human brain development using optical projection tomography===
BMC Neurosci. 2004 Aug 6;5:27.
 
 
Kerwin J, Scott M, Sharpe J, Puelles L, Robson SC, Martínez-de-la-Torre M, Ferran JL, Feng G, Baldock R, Strachan T, Davidson D, Lindsay S.
Source
Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK. j.m.kerwin@ncl.ac.uk
 
Abstract
 
BACKGROUND:
As development proceeds the human embryo attains an ever more complex three dimensional (3D) structure. Analyzing the gene expression patterns that underlie these changes and interpreting their significance depends on identifying the anatomical structures to which they map and following these patterns in developing 3D structures over time. The difficulty of this task greatly increases as more gene expression patterns are added, particularly in organs with complex 3D structures such as the brain. Optical Projection Tomography (OPT) is a new technology which has been developed for rapidly generating digital 3D models of intact specimens. We have assessed the resolution of unstained neuronal structures within a Carnegie Stage (CS)17 OPT model and tested its use as a framework onto which anatomical structures can be defined and gene expression data mapped.
RESULTS:
Resolution of the OPT models was assessed by comparison of digital sections with physical sections stained, either with haematoxylin and eosin (H&E) or by immunocytochemistry for GAP43 or PAX6, to identify specific anatomical features. Despite the 3D models being of unstained tissue, peripheral nervous system structures from the trigeminal ganglion (approximately 300 microm by approximately 150 microm) to the rootlets of cranial nerve XII (approximately 20 microm in diameter) were clearly identifiable, as were structures in the developing neural tube such as the zona limitans intrathalamica (core is approximately 30 microm thick). Fourteen anatomical domains have been identified and visualised within the CS17 model. Two 3D gene expression domains, known to be defined by Pax6 expression in the mouse, were clearly visible when PAX6 data from 2D sections were mapped to the CS17 model. The feasibility of applying the OPT technology to all stages from CS12 to CS23, which encompasses the major period of organogenesis for the human developing central nervous system, was successfully demonstrated.
CONCLUSION:
In the CS17 model considerable detail is visible within the developing nervous system at a minimum resolution of approximately 20 microm and 3D anatomical and gene expression domains can be defined and visualised successfully. The OPT models and accompanying technologies for manipulating them provide a powerful approach to visualising and analysing gene expression and morphology during early human brain development.
 
 
PMID 15298700


==Neural Development Table==
==Neural Development Table==

Revision as of 01:28, 21 February 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 25) Embryology Neural System Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Neural_System_Development

Neural Development Journal - http://www.neuraldevelopment.com/articles/browse.asp

UNSW Embryology Links

  • Animal Neural Development - A number of different animal models of neural development, both normal and abnormal, have been established. Mouse | Pig | Rabbit


Atlas of Human Central Nervous System Development

  • The Spinal Cord from Gestational Week 4 to the 4th Postnatal Month

Shirley A . Bayer and Joseph Altman CRC Press 2002 Print ISBN: 978-0-8493-1420-9 eBook ISBN: 978-1-4200-4018-0 http://www.crcnetbase.com/doi/book/10.1201/9781420040180

  • The Human Brain During the Third Trimester

Shirley A . Bayer and Joseph Altman CRC Press 2003 Print ISBN: 978-0-8493-1421-6 eBook ISBN: 978-0-203-49494-3 http://www.crcnetbase.com/doi/book/10.1201/9780203494943

  • The Human Brain During the Second Trimester

Shirley A . Bayer and Joseph Altman CRC Press 2005 Print ISBN: 978-0-8493-1422-3 eBook ISBN: 978-0-203-50748-3 http://www.crcnetbase.com/doi/book/10.1201/9780203507483

  • The Human Brain During the Late First Trimester

Shirley A . Bayer and Joseph Altman CRC Press 2006 Print ISBN: 978-0-8493-1423-0 eBook ISBN: 978-1-4200-0327-7 http://www.crcnetbase.com/doi/book/10.1201/9781420003277

  • The Human Brain During the Early First Trimester

Shirley A . Bayer and Joseph Altman CRC Press 2007 Print ISBN: 978-0-8493-1424-7 eBook ISBN: 978-1-4200-0328-4 http://www.crcnetbase.com/doi/book/10.1201/9781420003284

2011

The Zagreb Collection of human brains: a unique, versatile, but underexploited resource for the neuroscience community

Ann N Y Acad Sci. 2011 May;1225 Suppl 1:E105-30. doi: 10.1111/j.1749-6632.2011.05993.x.

Judaš M, Šimić G, Petanjek Z, Jovanov-Milošević N, Pletikos M, Vasung L, Vukšić M, Kostović I. Source University of Zagreb School of Medicine, Croatian Institute for Brain Research, Zagreb, Croatia. Abstract The Zagreb Collection of developing and adult human brains was founded in 1974 by Ivica Kostović and consists of 1,278 developing and adult human brains, including 610 fetal, 317 children, and 359 adult brains. It is one of the largest collections of developing human brains. The collection serves as a key resource for many focused research projects and has led to several seminal contributions on mammalian cortical development, such as the discovery of the transient fetal subplate zone and of early bilaminar synaptogenesis in the embryonic and fetal human cerebral cortex, and the first description of growing afferent pathways in the human fetal telencephalon. The Zagreb Collection also serves as a core resource for ever-growing networks of international collaboration and represents the starting point for many young investigators who now pursue independent research careers at leading international institutions. The Zagreb Collection, however, remains underexploited owing to a lack of adequate funding in Croatia. Funding could establish an online catalog of the collection and modern virtual microscopy scanning methods to make the collection internationally more accessible.

© 2011 New York Academy of Sciences.

PMID: 21599691 http://www.ncbi.nlm.nih.gov/pubmed/21599691

Plxdc2 is a mitogen for neural progenitors

PLoS One. 2011 Jan 21;6(1):e14565.

Miller-Delaney SF, Lieberam I, Murphy P, Mitchell KJ. Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.

Abstract

The development of different brain regions involves the coordinated control of proliferation and cell fate specification along and across the neuraxis. Here, we identify Plxdc2 as a novel regulator of these processes, using in ovo electroporation and in vitro cultures of mammalian cells. Plxdc2 is a type I transmembrane protein with some homology to nidogen and to plexins. It is expressed in a highly discrete and dynamic pattern in the developing nervous system, with prominent expression in various patterning centres. In the chick neural tube, where Plxdc2 expression parallels that seen in the mouse, misexpression of Plxdc2 increases proliferation and alters patterns of neurogenesis, resulting in neural tube thickening at early stages. Expression of the Plxdc2 extracellular domain alone, which can be cleaved and shed in vivo, is sufficient for this activity, demonstrating a cell non-autonomous function. Induction of proliferation is also observed in cultured embryonic neuroepithelial cells (ENCs) derived from E9.5 mouse neural tube, which express a Plxdc2-binding activity. These experiments uncover a direct molecular activity of Plxdc2 in the control of proliferation, of relevance in understanding the role of this protein in various cancers, where its expression has been shown to be altered. They also implicate Plxdc2 as a novel component of the network of signalling molecules known to coordinate proliferation and differentiation in the developing nervous system.

PMID: 21283688 http://www.ncbi.nlm.nih.gov/pubmed/21283688

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024984

Plxdc2 transmembrane protein Plexin domain-containing 2. mouse Plxdc2 gene encodes a type I transmembrane protein of 530 amino acids, characterised by an extracellular region of weak nidogen homology and a plexin repeat or PSI domain, a domain found in several known axon guidance molecules.

Plxdc1 In the human, mouse and chick Plxdc2 has this one related gene.

Molecular Patterning "The midbrain-hindbrain boundary (MHB), which expresses Wnt1 and Fgf8, is one of several local signalling centres in the neuroepithelium which refines AP specification of the brain. DV patterning is influenced by the floor plate, which expresses ventralising factors including sonic hedgehog (Shh) and nodal and the roof plate at the dorsal midline, which expresses members of the BMP and Wnt families. Differential dorsal and ventral growth of the brain is also co-ordinated via a signalling cascade of Shh, FGF and Wnt activity."

2010

Developmental changes in cerebral grey and white matter volume from infancy to adulthood.

Int J Dev Neurosci. 2010 Oct;28(6):481-9. Epub 2010 Jun 30. Groeschel S, Vollmer B, King MD, Connelly A.

Radiology and Physics Unit, UCL Institute of Child Health, London, UK. s.groeschel@gmx.org Abstract

In order to quantify human brain development in vivo, high resolution magnetic resonance images of 158 normal subjects from infancy to young adulthood were studied (age range 3 months-30 years, 71 males, 87 females). Data were analysed using algorithms based on voxel-based morphometry (VBM) (an objective whole brain processing technique) to generate global volume measures of whole brain, grey matter (GM) and white matter (GM). Gender-specific development of WM and GM volumes is characterised using a piecewise polynomial growth curve model to account for the non-linear nature of human brain development, implemented using Markov chain Monte Carlo simulation. The statistical method employed in this study proved to be successful and robust in the characterisation of brain development. The resulting growth curve parameter estimates lead to the following observations: total brain volume is demonstrated to undergo an initial rapid spurt. The total GM volume peaks during childhood and decreases thereafter, whereas total WM volume increases up to young adulthood. Relative to brain size, GM decreases and WM increases markedly over this age range in a non-linear manner, resulting in an increasing WM-to-GM ratio over much of the observed age range. In addition, significant gender differences are found. In general, brain volume and total white and grey matter volume are larger in males than in females, with a time-dependent difference over the age range studied. Over part of the observed age range females tend to have more GM volume relative to brain size and lower WM-to-GM ratio than males. The presented findings should be taken into account when investigating physiological and pathological changes during brain development.

http://www.ncbi.nlm.nih.gov/pubmed/20600789

2009

Heterogeneity in subcortical brain development: A structural magnetic resonance imaging study of brain maturation from 8 to 30 years.

J Neurosci. 2009 Sep 23;29(38):11772-82.

Ostby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB.

Center for the Study of Human Cognition, Department of Psychology, University of Oslo, Norway. ylva.ostby@psykologi.uio.no Abstract Brain development during late childhood and adolescence is characterized by decreases in gray matter (GM) and increases in white matter (WM) and ventricular volume. The dynamic nature of development across different structures is, however, not well understood, and the present magnetic resonance imaging study took advantage of a whole-brain segmentation approach to describe the developmental trajectories of 16 neuroanatomical volumes in the same sample of children, adolescents, and young adults (n = 171; range, 8-30 years). The cerebral cortex, cerebral WM, caudate, putamen, pallidum, accumbens area, hippocampus, amygdala, thalamus, brainstem, cerebellar GM, cerebellar WM, lateral ventricles, inferior lateral ventricles, third ventricle, and fourth ventricle were studied. The cerebral cortex was further analyzed in terms of lobar thickness and surface area. The results revealed substantial heterogeneity in developmental trajectories. GM decreased nonlinearly in the cerebral cortex and linearly in the caudate, putamen, pallidum, accumbens, and cerebellar GM, whereas the amygdala and hippocampus showed slight, nonlinear increases in GM volume. WM increased nonlinearly in both the cerebrum and cerebellum, with an earlier maturation in cerebellar WM. In addition to similarities in developmental trajectories within subcortical regions, our results also point to differences between structures within the same regions: among the basal ganglia, the caudate showed a weaker relationship with age than the putamen and pallidum, and in the cerebellum, differences were found between GM and WM development. These results emphasize the importance of studying a wide range of structural variables in the same sample, for a broader understanding of brain developmental principles.

http://www.ncbi.nlm.nih.gov/pubmed/19776264 http://www.jneurosci.org/cgi/content/full/29/38/11772

2008

Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development

Eur J Neurosci. 2008 Oct;28(8):1449-56.

Bayatti N, Sarma S, Shaw C, Eyre JA, Vouyiouklis DA, Lindsay S, Clowry GJ. Source Institute of Neuroscience, Newcastle University, Newcastle-upon-Tyne, UK.

Abstract

The transcription factors Emx2 and Pax6 are expressed in the proliferating zones of the developing rodent neocortex, and gradients of expression interact in specifying caudal and rostral identities. Pax6 is also involved in corticoneurogenesis, being expressed by radial glial progenitors that give rise to cells that also sequentially express Tbr2, NeuroD and Tbr1, genes temporally downstream of Pax6. In this study, using in situ hybridization, we analysed the expression of EMX2, PAX6, TBR2, NEUROD and TBR1 mRNA in the developing human cortex between 8 and 12 postconceptional weeks (PCW). EMX2 mRNA was expressed in the ventricular (VZ) and subventricular zones (SVZ), but also in the cortical plate, unlike in the rodent. However, gradients of expression were similar to that of the rodent at all ages studied. PAX6 mRNA expression was limited to the VZ and SVZ. At 8 PCW, PAX6 was highly expressed rostrally but less so caudally, as has been seen in the rodent, however this gradient disappeared early in corticogenesis, by 9 PCW. There was less restricted compartment-specific expression of TBR2, NEUROD and TBR1 mRNA than in the rodent, where the gradients of expression were similar to that of PAX6 prior to 9 PCW. The gradient disappeared for TBR2 by 10 PCW, and for NEUROD and TBR1 by 12 PCW. These data support recent reports that EMX2 but not PAX6 is more directly involved in arealization, highlighting that analysis of human development allows better spatio-temporal resolution than studies in rodents.

PMID 18973570


A structural MRI study of human brain development from birth to 2 years.

Knickmeyer RC, Gouttard S, Kang C, Evans D, Wilber K, Smith JK, Hamer RM, Lin W, Gerig G, Gilmore JH. J Neurosci. 2008 Nov 19;28(47):12176-82. PMID 19020011

2004

3 dimensional modelling of early human brain development using optical projection tomography

BMC Neurosci. 2004 Aug 6;5:27.


Kerwin J, Scott M, Sharpe J, Puelles L, Robson SC, Martínez-de-la-Torre M, Ferran JL, Feng G, Baldock R, Strachan T, Davidson D, Lindsay S. Source Institute of Human Genetics, University of Newcastle upon Tyne, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK. j.m.kerwin@ncl.ac.uk

Abstract

BACKGROUND: As development proceeds the human embryo attains an ever more complex three dimensional (3D) structure. Analyzing the gene expression patterns that underlie these changes and interpreting their significance depends on identifying the anatomical structures to which they map and following these patterns in developing 3D structures over time. The difficulty of this task greatly increases as more gene expression patterns are added, particularly in organs with complex 3D structures such as the brain. Optical Projection Tomography (OPT) is a new technology which has been developed for rapidly generating digital 3D models of intact specimens. We have assessed the resolution of unstained neuronal structures within a Carnegie Stage (CS)17 OPT model and tested its use as a framework onto which anatomical structures can be defined and gene expression data mapped. RESULTS: Resolution of the OPT models was assessed by comparison of digital sections with physical sections stained, either with haematoxylin and eosin (H&E) or by immunocytochemistry for GAP43 or PAX6, to identify specific anatomical features. Despite the 3D models being of unstained tissue, peripheral nervous system structures from the trigeminal ganglion (approximately 300 microm by approximately 150 microm) to the rootlets of cranial nerve XII (approximately 20 microm in diameter) were clearly identifiable, as were structures in the developing neural tube such as the zona limitans intrathalamica (core is approximately 30 microm thick). Fourteen anatomical domains have been identified and visualised within the CS17 model. Two 3D gene expression domains, known to be defined by Pax6 expression in the mouse, were clearly visible when PAX6 data from 2D sections were mapped to the CS17 model. The feasibility of applying the OPT technology to all stages from CS12 to CS23, which encompasses the major period of organogenesis for the human developing central nervous system, was successfully demonstrated. CONCLUSION: In the CS17 model considerable detail is visible within the developing nervous system at a minimum resolution of approximately 20 microm and 3D anatomical and gene expression domains can be defined and visualised successfully. The OPT models and accompanying technologies for manipulating them provide a powerful approach to visualising and analysing gene expression and morphology during early human brain development.


PMID 15298700

Neural Development Table

Neural Tube Primary Vesicles Secondary Vesicles Adult Structures
Brain Prosencephalon Telencephalon Rhinencephalon, Amygdala, Hippocampus, Neocortex, Basal Ganglia, Lateral Ventricles
Diencephalon Epithalamus, Thalamus, Hypothalamus, Subthalamus, Pituitary, Pineal, Third ventricle
Mesencephalon Mesencephalon Tectum, Cerebral peduncle, Pretectum, Cerebral aqueduct
Rhombencephalon Metencephalon Pons, Cerebellum
Myelencephalon Medulla oblongata
Spinal Cord

Neural Table Linked

Neural Tube Primary Vesicles Secondary Vesicles Adult Structures
Brain Prosencephalon Telencephalon Rhinencephalon, Amygdala, Hippocampus, Neocortex, Basal Ganglia, lateral ventricles
Diencephalon Epithalamus, Thalamus, Hypothalamus, Subthalamus, Pituitary, Pineal, third ventricle
Mesencephalon Mesencephalon Tectum, Cerebral peduncle, Pretectum, cerebral aqueduct
Rhombencephalon Metencephalon Pons, Cerebellum
Myelencephalon Medulla Oblongata
Spinal Cord
Neural Parts: neural | prosencephalon | telencephalon cerebrum | amygdala | hippocampus | basal ganglia | diencephalon | epithalamus | thalamus | hypothalamus‎ | pituitary | pineal | mesencephalon | tectum | rhombencephalon | metencephalon | pons | cerebellum | myelencephalon | medulla oblongata | spinal cord | neural vascular | ventricular | lateral ventricles | third ventricle | cerebral aqueduct | fourth ventricle | central canal | meninges | Category:Ventricular System | Category:Neural