Talk:Neural Crest - Cranial Nerve Development

From Embryology
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2019, May 21) Embryology Neural Crest - Cranial Nerve Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Neural_Crest_-_Cranial_Nerve_Development

2019

Cranial Pair 0: The Nervus Terminalis

Anat Rec (Hoboken). 2019 Mar;302(3):394-404. doi: 10.1002/ar.23826. Epub 2018 May 17.

Peña-Melián Á1, Cabello-de la Rosa JP2, Gallardo-Alcañiz MJ2, Vaamonde-Gamo J2, Relea-Calatayud F3, González-López L3, Villanueva-Anguita P4, Flores-Cuadrado A4, Saiz-Sánchez D4, Martínez-Marcos A4.

Originally discovered in elasmobranchs by Fritsh in 1878, the nervus terminalis has been found in virtually all species, including humans. After more than one-century debate on its nomenclature, it is nowadays recognized as cranial pair zero. The nerve mostly originates in the olfactory placode, although neural crest contribution has been also proposed. Developmentally, the nervus terminalis is clearly observed in human embryos; subsequently, during the fetal period loses some of its ganglion cells, and it is less recognizable in adults. Fibers originating in the nasal cavity passes into the cranium through the middle area of the cribiform plate of the ethmoid bone. Intracranially, fibers joint the telencephalon at several sites including the olfactory trigone and the primordium of the hippocampus to reach preoptic and precommissural regions. The nervus terminalis shows ganglion cells, that sometimes form clusters, normally one or two located at the base of the crista galli, the so-called ganglion of the nervus terminalis. Its function is uncertain. It has been described that its fibers facilitates migration of luteinizing hormone-releasing hormone cells to the hypothalamus thus participating in the development of the hypothalamic-gonadal axis, which alteration may provoke Kallmann's syndrome in humans. This review summarizes current knowledge on this structure, incorporating original illustrations of the nerve at different developmental stages, and focuses on its anatomical and clinical relevance. Anat Rec, 302:394-404, 2019.

© 2018 Wiley Periodicals, Inc.

KEYWORDS: Kallmann's syndrome; gonadotropin-releasing hormone; luteinizing hormone-releasing hormone; olfactory placode PMID: 29663690 DOI: 10.1002/ar.23826