Talk:Mouse Development: Difference between revisions

From Embryology
No edit summary
Line 5: Line 5:


* http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18083227 murine placenta contains two invasive cell types, trophoblast giant cells (TGC) and glycogen trophoblast cells (GlyT) TGC population is now recognized to have several subtypes, two of which are invasive; TGCs that form a barrier between the maternal decidua and the underlying placenta (parietal TGCs) and TGCs that invade via an endovascular route (spiral artery-associated TGCs)
* http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18083227 murine placenta contains two invasive cell types, trophoblast giant cells (TGC) and glycogen trophoblast cells (GlyT) TGC population is now recognized to have several subtypes, two of which are invasive; TGCs that form a barrier between the maternal decidua and the underlying placenta (parietal TGCs) and TGCs that invade via an endovascular route (spiral artery-associated TGCs)
* Eur J Neurosci. 2008 Jun;27(11):2838-46.
Synaptogenesis in the mouse olfactory bulb during glomerulus development.
Blanchart A, Romaguera M, García-Verdugo JM, de Carlos JA, López-Mascaraque L.
Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain.
Synaptogenesis is essential for the development of neuronal networks in the brain. In the olfactory bulb (OB) glomeruli, numerous synapses must form between sensory olfactory neurons and the dendrites of mitral/tufted and periglomerular cells. Glomeruli develop from E13 to E16 in the mouse, coincident with an increment of the neuropil in the border between the external plexiform (EPL) and olfactory nerve layers (ONL), coupled to an extensive labelling of phalloidin and GAP-43 from the ONL to EPL. We have tracked synaptogenesis in the OB during this period by electron microscopy (EM) and immunolabelling of the transmembrane synaptic vesicle glycoprotein SV-2. No SV-2 labelling or synapses were detected at E13, although electrodense junctions lacking synaptic vesicles could be observed by EM. At E14, sparse SV-2 labelling appears in the most ventral and medial part of the incipient OB, which displays a ventro-dorsal gradient by E15 but covers the entire OB by E16. These data establish a spatio-temporal pattern of synaptogenesis, which perfectly matches with the glomeruli formation in developing OB.
PMID: 18588529

Revision as of 08:21, 19 November 2009

Background Reading

  • Mouse models of congenital cardiovascular disease. Moon A. Curr Top Dev Biol. 2008;84:171-248. Review. PMID: 19186245
  • Mouse models for investigating the developmental basis of human birth defects. Moon AM. Pediatr Res. 2006 Jun;59(6):749-55. Epub 2006 Apr 26. PMID: 16641221


  • http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=18083227 murine placenta contains two invasive cell types, trophoblast giant cells (TGC) and glycogen trophoblast cells (GlyT) TGC population is now recognized to have several subtypes, two of which are invasive; TGCs that form a barrier between the maternal decidua and the underlying placenta (parietal TGCs) and TGCs that invade via an endovascular route (spiral artery-associated TGCs)


  • Eur J Neurosci. 2008 Jun;27(11):2838-46.

Synaptogenesis in the mouse olfactory bulb during glomerulus development.

Blanchart A, Romaguera M, García-Verdugo JM, de Carlos JA, López-Mascaraque L.

Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, Spain.

Synaptogenesis is essential for the development of neuronal networks in the brain. In the olfactory bulb (OB) glomeruli, numerous synapses must form between sensory olfactory neurons and the dendrites of mitral/tufted and periglomerular cells. Glomeruli develop from E13 to E16 in the mouse, coincident with an increment of the neuropil in the border between the external plexiform (EPL) and olfactory nerve layers (ONL), coupled to an extensive labelling of phalloidin and GAP-43 from the ONL to EPL. We have tracked synaptogenesis in the OB during this period by electron microscopy (EM) and immunolabelling of the transmembrane synaptic vesicle glycoprotein SV-2. No SV-2 labelling or synapses were detected at E13, although electrodense junctions lacking synaptic vesicles could be observed by EM. At E14, sparse SV-2 labelling appears in the most ventral and medial part of the incipient OB, which displays a ventro-dorsal gradient by E15 but covers the entire OB by E16. These data establish a spatio-temporal pattern of synaptogenesis, which perfectly matches with the glomeruli formation in developing OB.

PMID: 18588529