Talk:Molecular Development - microRNA

From Embryology
Revision as of 09:47, 12 June 2015 by Z8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 18) Embryology Molecular Development - microRNA. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Molecular_Development_-_microRNA


2015

Maternal peripheral blood natural killer cells incorporate placenta-associated microRNAs during pregnancy

Int J Mol Med. 2015 Jun;35(6):1511-24. doi: 10.3892/ijmm.2015.2157. Epub 2015 Mar 27.

Ishida Y1, Zhao D2, Ohkuchi A1, Kuwata T1, Yoshitake H2, Yuge K2, Takizawa T2, Matsubara S1, Suzuki M1, Saito S3, Takizawa T2.

Abstract

Although recent studies have demonstrated that microRNAs (miRNAs or miRs) regulate fundamental natural killer (NK) cellular processes, including cytotoxicity and cytokine production, little is known about the miRNA‑gene regulatory relationships in maternal peripheral blood NK (pNK) cells during pregnancy. In the present study, to determine the roles of miRNAs within gene regulatory networks of maternal pNK cells, we performed comprehensive miRNA and gene expression profiling of maternal pNK cells using a combination of reverse transcription quantitative PCR (RT‑qPCR)‑based miRNA array and DNA microarray analyses and analyzed the differential expression levels between first‑ and third‑trimester pNK cells. Furthermore, we constructed regulatory networks for miRNA‑mediated gene expression in pNK cells during pregnancy by Ingenuity Pathway Analysis (IPA). PCR‑based array analysis revealed that the placenta‑derived miRNAs [chromosome 19 miRNA cluster (C19MC) miRNAs] were detected in pNK cells during pregnancy. Twenty‑five miRNAs, including six C19MC miRNAs, were significantly upregulated in the third‑ compared to first‑trimester pNK cells. The rapid clearance of C19MC miRNAs also occurred in the pNK cells following delivery. Nine miRNAs, including eight C19MC miRNAs, were significantly downregulated in the post‑delivery pNK cells compared to those of the third‑trimester. DNA microarray analysis identified 69 NK cell function‑related genes that were differentially expressed between the first‑ and third‑trimester pNK cells. On pathway and network analysis, the observed gene expression changes of pNK cells likely contribute to the increase in the cytotoxicity, as well as the cell cycle progression of third‑ compared to first‑trimester pNK cells. Thirteen of the 69 NK cell function‑related genes were significantly downregulated between the first‑ and third‑trimester pNK cells. Nine of the 13 downregulated NK‑function‑associated genes were in silico target candidates of 12 upregulated miRNAs, including C19MC miRNA miR‑512‑3p. The results of this study suggest that the transfer of placental C19MC miRNAs into maternal pNK cells occurs during pregnancy. The present study provides new insight into maternal NK cell functions.

PMID 25824636

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432927/

http://www.spandidos-publications.com/ijmm/35/6/1511

2014

Potential Regulatory Role of MicroRNAs in the Development of Bovine Gastrointestinal Tract during Early Life

PLoS One. 2014 Mar 28;9(3):e92592. doi: 10.1371/journal.pone.0092592. eCollection 2014.

Liang G1, Malmuthuge N1, McFadden TB2, Bao H1, Griebel PJ3, Stothard P1, Guan LL1. Author information

Abstract This study aimed to investigate the potential regulatory role of miRNAs in the development of gastrointestinal tract (GIT) during the early life of dairy calves. Rumen and small intestinal (mid-jejunum and ileum) tissue samples were collected from newborn (30 min after birth; n = 3), 7-day-old (n = 6), 21-day-old (n = 6), and 42-day-old (n = 6) dairy calves. The miRNA profiling was performed using Illumina RNA-sequencing and the temporal and regional differentially expressed miRNAs were further validated using qRT-PCR. Analysis of 16S rRNA gene copy numbers was used to quantify total bacteria, Bifidobacterium and Lactobacillus species. The expression of miR-143 was abundant in all three gut regions, at all time points and it targets genes involved primarily in the proliferation of connective tissue cells and muscle cells, suggesting a role in regulating rapid tissue development during the early life of calves. The expression of miR-146, miR-191, miR-33, miR-7, miR-99/100, miR-486, miR-145, miR-196 and miR-211 displayed significant temporal differences (FDR <0.05), while miR-192/215, miR-194, miR-196, miR-205 and miR-31 revealed significant regional differences (FDR <0.05). The expression levels of miR-15/16, miR-29 and miR-196 were positively correlated with the copy numbers of 16S rRNA gene of Bifidobacterium or Lactobacillus species or both (P<0.05). Functional analysis using Ingenuity Pathway Analysis identified the above mentioned differentially expressed miRNAs as potential regulators of gut tissue cell proliferation and differentiation. The bacterial density-associated miRNAs were identified as modulators of the development of lymphoid tissues (miR-196), maturation of dendritic cells (miR-29) and development of immune cells (miR-15/16). The present study revealed temporal and regional changes in miRNA expression and a correlation between miRNA expression and microbial population in the GIT during the early life, which provides further evidence for another mechanism by which host-microbial interactions play a role in regulating gut development.

PMID 24682221

2013

miRNA regulated pathways in late stage murine lung development

BMC Dev Biol. 2013 Apr 24;13:13. doi: 10.1186/1471-213X-13-13.

Mujahid S1, Logvinenko T, Volpe MV, Nielsen HC. Author information

Abstract BACKGROUND: MicroRNAs play important roles in regulating biological processes, including organ morphogenesis and maturation. However, little is known about specific pathways regulated by miRNA during lung development. Between the canalicular and saccular stages of the developing lung several important cellular events occur, including the onset of surfactant synthesis, microvascular remodeling and structural preparation for subsequent alveolarization. The miRNAs that are actively regulated, and the identity of their targets during this important developmental interval in the lung remain elusive. RESULTS: Using TLDA low density real-time PCR arrays, the expression of 376 miRNAs in male and female fetal mouse lungs of gestational days E15 - E18 were profiled. Statistical analyses identified 25 and 37 miRNAs that changed significantly between sexes and with gestation, respectively. In silico analysis using Ingenuity Pathway Analysis (IPA) identified specific pathways and networks known to be targets of these miRNAs which are important to lung development. Pathways that are targeted by sex regulated miRNAs include retinoin, IGFR1, Tp53 and Akt. Pathways targeted by gestation-regulated miRNAs include VEGFA and mediators of glucose metabolism. CONCLUSION: MiRNAs are differentially regulated across time and between sexes during the canalicular and saccular stages of lung development. Sex-associated differential miRNA expression may regulate the differences in structural and functional male and female lung development, as shown by networks generated using in silico analysis. These data provide a valuable resource to further enhance the understanding of miRNA control of lung development and maturation. PMID 23617334

2011

A survey of small RNAs in human sperm

Hum Reprod. 2011 Dec;26(12):3401-12. Epub 2011 Oct 11. Krawetz SA, Kruger A, Lalancette C, Tagett R, Anton E, Draghici S, Diamond MP. Source Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA. Abstract BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24 000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18-30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈7%), Piwi-interacting piRNAs (≈17%), repeat-associated small RNAs (≈65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization.

PMID 21989093

2010

MicroRNA networks in mouse lung organogenesis

PLoS One. 2010 May 26;5(5):e10854. doi: 10.1371/journal.pone.0010854.

Dong J1, Jiang G, Asmann YW, Tomaszek S, Jen J, Kislinger T, Wigle DA. Author information

Abstract BACKGROUND: MicroRNAs (miRNAs) are known to be important regulators of both organ development and tumorigenesis. MiRNA networks and their regulation of messenger RNA (mRNA) translation and protein expression in specific biological processes are poorly understood. METHODS: We explored the dynamic regulation of miRNAs in mouse lung organogenesis. Comprehensive miRNA and mRNA profiling was performed encompassing all recognized stages of lung development beginning at embryonic day 12 and continuing to adulthood. We analyzed the expression patterns of dynamically regulated miRNAs and mRNAs using a number of statistical and computational approaches, and in an integrated manner with protein levels from an existing mass-spectrometry derived protein database for lung development. RESULTS: In total, 117 statistically significant miRNAs were dynamically regulated during mouse lung organogenesis and clustered into distinct temporal expression patterns. 11,220 mRNA probes were also shown to be dynamically regulated and clustered into distinct temporal expression patterns, with 3 major patterns accounting for 75% of all probes. 3,067 direct miRNA-mRNA correlation pairs were identified involving 37 miRNAs. Two defined correlation patterns were observed upon integration with protein data: 1) increased levels of specific miRNAs directly correlating with downregulation of predicted mRNA targets; and 2) increased levels of specific miRNAs directly correlating with downregulation of translated target proteins without detectable changes in mRNA levels. Of 1345 proteins analyzed, 55% appeared to be regulated in this manner with a direct correlation between miRNA and protein level, but without detectable change in mRNA levels. CONCLUSION: Systematic analysis of microRNA, mRNA, and protein levels over the time course of lung organogenesis demonstrates dynamic regulation and reveals 2 distinct patterns of miRNA-mRNA interaction. The translation of target proteins affected by miRNAs independent of changes in mRNA level appears to be a prominent mechanism of developmental regulation in lung organogenesis.

PMID 20520778

Small RNAs in the animal gonad: guarding genomes and guiding development

Int J Biochem Cell Biol. 2010 Aug;42(8):1334-47. Epub 2010 Mar 19.

Lau NC. Source Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA. nlau@brandeis.edu

Abstract

Germ cells must safeguard, apportion, package, and deliver their genomes with exquisite precision to ensure proper reproduction and embryonic development. Classical genetic approaches have identified many genes controlling animal germ cell development, but only recently have some of these genes been linked to the RNA interference (RNAi) pathway, a gene silencing mechanism centered on small regulatory RNAs. Germ cells contain microRNAs (miRNAs), endogenous siRNAs (endo-siRNAs), and Piwi-interacting RNAs (piRNAs); these are bound by members of the Piwi/Argonaute protein family. piwi genes were known to specify germ cell development, but we now understand that mutations disrupting germline development can also affect small RNA accumulation. Small RNA studies in germ cells have revealed a surprising diversity of regulatory mechanisms and a unifying function for germline genes in controlling the spread of transposable elements. Future challenges will be to understand the production of germline small RNAs and to identify the full breadth of gene regulation by these RNAs. Progress in this area will likely impact biomedical goals of manipulating stem cells and preventing diseases caused by the transposition of mobile DNA elements.

Copyright 2010 Elsevier Ltd. All rights reserved.

PMID 20227517