Talk:Fly Development

From Embryology
Revision as of 18:29, 20 September 2012 by Z8600021 (talk | contribs) (→‎2012)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2020, February 19) Embryology Fly Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Fly_Development


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2690651/?tool=pubmed

2012

Drosophila Hox and Sex-Determination Genes Control Segment Elimination through EGFR and extramacrochetae Activity

PLoS Genet. 2012 Aug;8(8):e1002874. Epub 2012 Aug 9.

Foronda D, Martín P, Sánchez-Herrero E. Source Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.

Abstract

The formation or suppression of particular structures is a major change occurring in development and evolution. One example of such change is the absence of the seventh abdominal segment (A7) in Drosophila males. We show here that there is a down-regulation of EGFR activity and fewer histoblasts in the male A7 in early pupae. If this activity is elevated, cell number increases and a small segment develops in the adult. At later pupal stages, the remaining precursors of the A7 are extruded under the epithelium. This extrusion requires the up-regulation of the HLH protein Extramacrochetae and correlates with high levels of spaghetti-squash, the gene encoding the regulatory light chain of the non-muscle myosin II. The Hox gene Abdominal-B controls both the down-regulation of spitz, a ligand of the EGFR pathway, and the up-regulation of extramacrochetae, and also regulates the transcription of the sex-determining gene doublesex. The male Doublesex protein, in turn, controls extramacrochetae and spaghetti-squash expression. In females, the EGFR pathway is also down-regulated in the A7 but extramacrochetae and spaghetti-squash are not up-regulated and extrusion of precursor cells is almost absent. Our results show the complex orchestration of cellular and genetic events that lead to this important sexually dimorphic character change.

PMID 22912593

http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1002874

Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland

PLoS One. 2012;7(7):e41604. Epub 2012 Jul 24.

Tokusumi Y, Tokusumi T, Shoue DA, Schulz RA. Source Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America.

Abstract

Hematopoiesis occurs in two phases in Drosophila, with the first completed during embryogenesis and the second accomplished during larval development. The lymph gland serves as the venue for the final hematopoietic program, with this larval tissue well-studied as to its cellular organization and genetic regulation. While the medullary zone contains stem-like hematopoietic progenitors, the posterior signaling center (PSC) functions as a niche microenvironment essential for controlling the decision between progenitor maintenance versus cellular differentiation. In this report, we utilize a PSC-specific GAL4 driver and UAS-gene RNAi strains, to selectively knockdown individual gene functions in PSC cells. We assessed the effect of abrogating the function of 820 genes as to their requirement for niche cell production and differentiation. 100 genes were shown to be essential for normal niche development, with various loci placed into sub-groups based on the functions of their encoded protein products and known genetic interactions. For members of three of these groups, we characterized loss- and gain-of-function phenotypes. Gene function knockdown of members of the BAP chromatin-remodeling complex resulted in niche cells that do not express the hedgehog (hh) gene and fail to differentiate filopodia believed important for Hh signaling from the niche to progenitors. Abrogating gene function of various members of the insulin-like growth factor and TOR signaling pathways resulted in anomalous PSC cell production, leading to a defective niche organization. Further analysis of the Pten, TSC1, and TSC2 tumor suppressor genes demonstrated their loss-of-function condition resulted in severely altered blood cell homeostasis, including the abundant production of lamellocytes, specialized hemocytes involved in innate immune responses. Together, this cell-specific RNAi knockdown survey and mutant phenotype analyses identified multiple genes and their regulatory networks required for the normal organization and function of the hematopoietic progenitor niche within the lymph gland.


PMID 22911822

Scanning electron microscopy of Drosophila

  • Scanning electron microscopy of Drosophila embryogenesis. I. The structure of the egg envelopes and the formation of the cellular blastoderm. Turner FR, Mahowald AP. Dev Biol. 1976 May;50(1):95-108. No abstract available. PMID: 817949
  • Scanning electron microscopy of Drosophila melanogaster embryogenesis. II. Gastrulation and segmentation. Turner FR, Mahowald AP. Dev Biol. 1977 Jun;57(2):403-16. No abstract available. PMID: 406152
  • Scanning electron microscopy of Drosophila melanogaster embryogenesis. III. Formation of the head and caudal segments. Turner FR, Mahowald AP. Dev Biol. 1979 Jan;68(1):96-109. PMID: 1081572