Talk:Endocrine System Development: Difference between revisions

From Embryology
Line 7: Line 7:
==Endocrinology - An Integrated Approach==
==Endocrinology - An Integrated Approach==
{| class="wikitable collapsible collapsed"
{| class="wikitable collapsible collapsed"
! Endocrinology  - Thyroid
! Thyroid
|-  
|-  
| [[File:Endocrinology - An Integrated Approach.png|80px]]  
| [[File:Endocrinology - An Integrated Approach.png|80px]]  

Revision as of 12:54, 20 November 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 19) Embryology Endocrine System Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Endocrine_System_Development

Introduction

Endocrine Links: Introduction | BGD Lecture | Science Lecture | Lecture Movie | pineal | hypothalamus‎ | pituitary | thyroid | parathyroid | thymus | pancreas | adrenal | endocrine gonad‎ | endocrine placenta | other tissues | Stage 22 | endocrine abnormalities | Hormones | Category:Endocrine
Historic Embryology - Endocrine  
1903 Islets of Langerhans | 1903 Pig Adrenal | 1904 interstitial Cells | 1908 Pancreas Different Species | 1908 Pituitary | 1908 Pituitary histology | 1911 Rathke's pouch | 1912 Suprarenal Bodies | 1914 Suprarenal Organs | 1915 Pharynx | 1916 Thyroid | 1918 Rabbit Hypophysis | 1920 Adrenal | 1935 Mammalian Hypophysis | 1926 Human Hypophysis | 1927 Adrenal | 1927 Hypophyseal fossa | 1930 Adrenal | 1932 Pineal Gland and Cysts | 1935 Hypophysis | 1935 Pineal | 1937 Pineal | 1935 Parathyroid | 1940 Adrenal | 1941 Thyroid | 1950 Thyroid Parathyroid Thymus | 1957 Adrenal

| original Endocrine page

Endocrinology - An Integrated Approach


Endocrinology - An Integrated Approach.png Stephen Nussey and Saffron Whitehead.

St. George's Hospital Medical School, London, UK Oxford: BIOS Scientific Publishers; 2001. ISBN-10: 1-85996-252-1

Copyright © 2001, BIOS Scientific Publishers Limited.

http://www.ncbi.nlm.nih.gov/books/NBK22/

Preface

Chapter 1. Principles of endocrinology

Chapter 1. Principles of endocrinology

Chapter 2. The endocrine pancreas

Chapter 2. The endocrine pancreas

Chapter 3. The thyroid gland

Chapter 3. The thyroid gland

Chapter 4. The adrenal gland

Chapter 4. The adrenal gland

Chapter 5. The parathyroid glands and vitamin D

Chapter 5. The parathyroid glands and vitamin D

Chapter 6. The gonad

Chapter 6. The gonad

Chapter 7. The pituitary gland

Chapter 7. The pituitary gland

Chapter 8. Cardiovascular and renal endocrinology

Chapter 8. Cardiovascular and renal endocrinology

References

Effects of environmental endocrine disruptors on pubertal development

J Clin Res Pediatr Endocrinol. 2011 Mar;3(1):1-6. Epub 2011 Feb 23.

Ozen S, Darcan S.

Pediatric Endocrinology Unit, Mersin Children Hospital, Mersin, Turkey. Abstract The onset and course of puberty are under the control of the neuroendocrine system. Factors affecting the timing and regulation of the functions of this system may alter the onset and course of puberty. Several environmental endocrine disruptors (EDs) with significant influences on the normal course of puberty have been identified. Numerous animal and human studies concerning EDs have been conducted showing that these substances may extensively affect human health; nevertheless, there are still several issues that remain to be clarified. In this paper, the available evidence from animal and human studies on the effects of environmental EDs with the potential to cause precocious or delayed puberty was reviewed.Conflict of interest:None declared.

PMID 21448326

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065309

2012

Neurobehavioral risk is associated with gestational exposure to stress hormones

Expert Rev Endocrinol Metab. 2012 Jul;7(4):445-459.

Sandman CA, Davis EP. Source Department of Psychiatry & Human Behavior, Women and Children's Health and Well-Being Project, University of California, Irvine, Orange, CA, USA.

Abstract

The developmental origins of disease or fetal programming model predict that early exposures to threat or adverse conditions have lifelong consequences that result in harmful outcomes for health. The maternal endocrine 'fight or flight' system is a source of programming information for the human fetus to detect threats and adjust their developmental trajectory for survival. Fetal exposures to intrauterine conditions including elevated stress hormones increase the risk for a spectrum of health outcomes depending on the timing of exposure, the timetable of organogenesis and the developmental milestones assessed. Recent prospective studies, reviewed here, have documented the neurodevelopmental consequences of fetal exposures to the trajectory of stress hormones over the course of gestation. These studies have shown that fetal exposures to biological markers of adversity have significant and largely negative consequences for fetal, infant and child emotional and cognitive regulation and reduced volume in specific brain structures.

PMID 23144647


External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

Histology

Adult

Embryonic

Terms

adrenocorticotropin - (ACTH or corticotropin) anterior pituitary, peptide hormone

antidiuretic hormone - (ADH) hypothalamus, peptide hormone

atrial natriuretic factor - (ANP) heart, , peptide hormone

calcitonin - (CT) C cells of thyroid, peptide hormone

follicle stimulating hormone - (FSH) pituitary, protein hormone

growth hormone - (GH) pituitary, peptide hormone

human chorionic gonadotropin - (hCG) pancreas glycoprotein hormone with 2 subunits (alpha and beta joined non covalently). Similar in structure to luteinizing hormone (LH), hCG exists in multiple hormonal and non-endocrine agents (regular hCG, hyperglycosylated hCG and the free beta-subunit of hyperglycosylated hCG). PMID: 19171054

lutenizing hormone - (LH) pituitary, protein hormone

melaocyte stimulating hormone - (MSH) pituitary, peptide hormone

prolactin - (PRL) pituitary, peptide hormone

parathyroid hormone - (PTH) parathyroid, peptide hormone

thyroid hormone - (TH) thyroid,amino acid derivative

thyroid stimulating hormone - (TSH) pituitary, protein hormone