Talk:Endocrine - Pituitary Development

From Embryology
Revision as of 08:08, 29 May 2012 by Z8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 20) Embryology Endocrine - Pituitary Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Endocrine_-_Pituitary_Development

2012

Follicle-Stimulating Hormone Accelerates Mouse Oocyte Development In Vivo

Biol Reprod. 2012 Apr 18. [Epub ahead of print]

Demeestere I, Streiff AK, Suzuki J, Al-Khabouri S, Mahrous E, Tan SL, Clarke HJ. Abstract During folliculogenesis, oocytes grow and acquire developmental competence in a mutually dependent relationship with their adjacent somatic cells. Follicle-stimulating hormone (FSH) plays an essential and well-established role in the differentiation of the somatic follicular cells, but its function in the development of the oocyte has still not been elucidated. We report here the oocytes of Fshb(-/-) mice, which cannot produce FSH, grow at the same rate and reach the same size as those of wild-type mice. Consistent with this observation, the granulosa cells of Fshb(-/-) mice express the normal quantity of mRNA encoding Kit ligand, which has been implicated in oocyte growth. Oocytes of Fshb(-/-) mice also accumulate normal quantities of cyclin B1 and CDK1 proteins and mitochondrial DNA. Moreover, they acquire the ability to complete meiotic maturation in vitro and undergo the transition from non-surrounded nucleolus to surrounded nucleolus. However, these events of late oocyte development are significantly delayed. Following in vitro maturation and fertilization, however, only a small number of embryos derived from oocytes of Fshb(-/-) mice reach the blastocyst stage. Administration of equine chorionic gonadotropin, which provides FSH activity, 48 h before in vitro maturation increases the number of blastocysts subsequently obtained. These results indicate that FSH is not absolutely required for oocyte development in vivo but this process occurs more rapidly in its presence. We suggest that FSH may coordinate the development of the germ-line and somatic compartments of the follicle, ensuring that ovulation releases a developmentally competent egg.

PMID 22517620

2009

Identification of candidate genes for human pituitary development by EST analysis

Ma Y, Qi X, Du J, Song S, Feng D, Qi J, Zhu Z, Zhang X, Xiao H, Han Z, Hao X. BMC Genomics. 2009 Mar 15;10:109.

BACKGROUND: The pituitary is a critical neuroendocrine gland that is comprised of five hormone-secreting cell types, which develops in tandem during the embryonic stage. Some essential genes have been identified in the early stage of adenohypophysial development, such as PITX1, FGF8, BMP4 and SF-1. However, it is likely that a large number of signaling molecules and transcription factors essential for determination and terminal differentiation of specific cell types remain unidentified. High-throughput methods such as microarray analysis may facilitate the measurement of gene transcriptional levels, while Expressed sequence tag (EST) sequencing, an efficient method for gene discovery and expression level analysis, may no-redundantly help to understand gene expression patterns during development.

RESULTS: A total of 9,271 ESTs were generated from both fetal and adult pituitaries, and assigned into 961 gene/EST clusters in fetal and 2,747 in adult pituitary by homology analysis. The transcription maps derived from these data indicated that developmentally relevant genes, such as Sox4, ST13 and ZNF185, were dominant in the cDNA library of fetal pituitary, while hormones and hormone-associated genes, such as GH1, GH2, POMC, LHbeta, CHGA and CHGB, were dominant in adult pituitary. Furthermore, by using RT-PCR and in situ hybridization, Sox4 was found to be one of the main transcription factors expressed in fetal pituitary for the first time. It was expressed at least at E12.5, but decreased after E17.5. In addition, 40 novel ESTs were identified specifically in this tissue.

CONCLUSION: The significant changes in gene expression in both tissues suggest a distinct and dynamic switch between embryonic and adult pituitaries. All these data along with Sox4 should be confirmed to further understand the community of multiple signaling pathways that act as a cooperative network that regulates maturation of the pituitary. It was also suggested that EST sequencing is an efficient means of gene discovery.

PMID: 19284880 http://www.ncbi.nlm.nih.gov/pubmed/19284880

http://www.biomedcentral.com/1471-2164/10/109

Evaluation of the Hypothalamic-Pituitary-Adrenal Axis Function in Childhood and Adolescence

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790806/?tool=pubmed

Hypophyseal triplication: case report and embryologic considerations

AJNR Am J Neuroradiol. 2009 Aug;30(7):1328-9. Epub 2009 Mar 19.

Manara R, Citton V, Rossetto M, Padoan A, D'Avella D.

Neuroradiologic Unit, University Hospital of Padua, Padua, Italy. renzo.manara@sanita.padova.it Abstract SUMMARY: Hypophyseal triplication is malformation that has not been described previously. We present a child with midline abnormalities who underwent epignathus excision at birth. Brain MR imaging revealed 2 paired lateral pituitary glands and an oval midline gland, each with an independent stalk, connected to a thickened third ventricle floor. Because malformations represent a failure in embryogenesis, this case may provide interesting clues on the normal development of the hypophysis.

PMID: 19299490

http://www.ajnr.org/cgi/reprint/30/7/1328

Theory comparison

  • According to the classic theory,1,3,5 the hypophysis is believed to arise from 2 distinct structures, namely the diencephalic neuroectoderm (posterior lobe) and the oral ectoderm (anterior lobe). At approximately 42 days of gestation, a diverticulum originating from the stomodeum fuses with the downward extending diencephalic bud, both finally housed in the pituitary fossa.
  • In contrast to the traditional view, Gilbert (1934) found that in mammalian species, both the anterior and posterior part of the gland originate from the ventral neural ridge.1 In this model, resumed by Morton in 19574 in a case report of pituitary duplication, the gland is supposed to arise entirely from neuroectodermal tis- sue without the primary involvement of the Rathke pouch.


Prenatal MR imaging of the normal pituitary stalk

AJNR Am J Neuroradiol. 2009 May;30(5):1014-6. Epub 2009 Feb 4.

Righini A, Parazzini C, Doneda C, Arrigoni F, Triulzi F.

Radiology and Neuroradiology Department, Children's Hospital V. Buzzi, ICP, Milan, Italy. neurorad@icp.mi.it Abstract BACKGROUND AND PURPOSE: Prenatal imaging data of the normal pituitary gland and in vivo information on the development of the pituitary region are lacking; however, we noticed that the pituitary stalk (PS) is visible occasionally in utero on MR images. Our main purpose was to establish the detection rate of the PS in healthy fetuses at various gestational ages (GAs) by using single-shot fast spin-echo T2-weighted images.

MATERIALS AND METHODS: We selected 73 fetal cases with normal findings on prenatal MR imaging and clinical postnatal follow-up. The GA ranged between 19 and 37 weeks. The 3 planes of MR imaging sections were 4 mm thick with 1.25 x 1.25 mm in-plane resolution. Two pediatric neuroradiologists evaluated in consensus whether the PS was present as a linear isointense structure connecting the hypothalamic region with the floor of sella turcica. In those cases in which the PS was visible on the sagittal section, the angle formed by the intersection of the PS and the sellar plane (SP) was measured (PS-SP angle).

RESULTS: The PS was detectable on at least 1 coronal or sagittal section from 19 to 25 weeks' GA in 30/42 fetuses (71.4% sensitivity); from 26 to 37 weeks' GA, the PS was detected in all 31 fetuses (100% sensitivity). The PS-SP angle decreased significantly with GA, being <90 degrees in all fetuses after gestational week 25.

CONCLUSIONS: At the current spatial resolution of clinical prenatal MR imaging, PS can be reliably detected after 25 weeks' GA, so in case of a missing visualization, a strong suspicion of pituitary region anomaly could be raised.

PMID: 19193754 http://www.ajnr.org/cgi/content/full/30/5/1014

2007

Development and sexual dimorphism of the pituitary gland

Life Sci. 2007 Feb 13;80(10):940-4. Epub 2006 Nov 29.

MacMaster FP, Keshavan M, Mirza Y, Carrey N, Upadhyaya AR, El-Sheikh R, Buhagiar CJ, Taormina SP, Boyd C, Lynch M, Rose M, Ivey J, Moore GJ, Rosenberg DR.

Department of Psychiatry & Behavioral Neurosciences, Wayne State University, and Children's Hospital of Michigan, Detroit, MI 48201, USA. Abstract The pituitary gland plays a central role in sexual development and brain function. Therefore, we examined the effect of age and gender on pituitary volume in a large sample of healthy children and adults. Volumetric magnetic resonance imaging (MRI) was conducted in one hundred and fifty four (77 males and 77 females) healthy participants. Males were between the ages of 7 to 35 years (16.91+/-5.89 years) and females were 7 to 35 years of age (16.75+/-5.75 years). Subjects were divided into subgroups of age (7 to 9, 10 to 13, 14 to 17, 18 to 21, 22 and older) and sex (male/female). Pituitary gland volume differed between sexes when comparing the age groups (F=3.55, df=2, 143, p=0.03). Females demonstrated larger pituitary glands than males in the age 14 to 17 year old groups (p=0.04). Young (19 years and under) and old (20 years and older) females demonstrated a correlation between pituitary volume and age. Males did not show this relationship. These findings provide additional evidence for gender differences in the normative anatomy of the pituitary and may have relevance for the study of various childhood onset neuropsychiatric disorders in which pituitary dysfunction has been implicated.

PMID: 17174342 http://www.ncbi.nlm.nih.gov/pubmed/17174342

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1853319/