Talk:Endocrine - Pineal Development: Difference between revisions

From Embryology
No edit summary
Line 31: Line 31:
PMID: 18385257  
PMID: 18385257  
http://www.ncbi.nlm.nih.gov/pubmed/18385257
http://www.ncbi.nlm.nih.gov/pubmed/18385257
==1992==
===Fine structure of the pinealopetal innervation of the mammalian pineal gland===
Microsc Res Tech. 1992 May 1;21(3):188-204.
Møller M.
Source
Department B, University of Copenhagen, Denmark.
Abstract
The mammalian pineal gland is innervated by peripheral sympathetic and parasympathetic nerve fibers as well as by nerve fibers originating in the central nervous system (central innervation). The perikarya of the sympathetic fibers are located in the superior cervical ganglia, while the fibers terminate in boutons containing small granular vesicles and a few large granular vesicles. Both noradrenaline and neuropeptide Y are contained in these neurons. The parasympathetic fibers originate from perikarya in the pterygopalatine ganglia. The neuropeptides, vasoactive intestinal peptide and peptide histidine isoleucine, are present in these fibers, the boutons of which contain small clear transmitter vesicles and larger granular vesicles. The fibers of the central innervation originate predominantly from perikarya located in hypothalamic and limbic forebrain structures as well as from perikarya in the optic system. These fibers terminate in boutons containing small clear and, in certain fibers, an abundant number of large granular vesicles. In rodents, the majority of the central fibers terminate in the deep pineal gland and the pineal stalk. From these areas impulses might be transmitted further caudally to the superficial pineal gland via neuronal structures or processes from pinealocytes. Several hypothalamic neuropeptides and monoamines might be contained in the central fibers. The intrapineal nerve fibers are located both in the perivascular spaces and intraparenchymally. The majority of the intraparenchymally located fibers terminate freely between the pinealocytes. However, some nerve terminals make synaptic contacts with the pinealocytes and in some species with intrapineal neurons. In fetal mammals, sympathetic, parasympathetic, and central fibers are also present. In addition, an unpaired nerve, connecting the caudal part of the pineal gland with the extreme rostral part of the mesencephalon, is present. This nerve is a homologue to the pineal nerve (nervus pinealis) observed in lower vertebrates.
PMID: 1606315

Revision as of 23:21, 25 May 2011

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 20) Embryology Endocrine - Pineal Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Endocrine_-_Pineal_Development

2011

Melatonin as a central molecule connecting neural development and calcium signaling

Funct Integr Genomics. 2011 Apr 5. [Epub ahead of print]

de Faria Poloni J, Feltes BC, Bonatto D. Source Instituto de Biotecnologia, Universidade de Caxias do Sul (UCS), Caxias do Sul, Rio Grande do Sul, Brazil.

Abstract

Melatonin (MEL) is a neuroendocrine hormone secreted by the pineal gland in association with the suprachiasmatic nucleus and peripheral tissues. MEL has been observed to play a critical role in the reproductive process and in the fetomaternal interface. Extrapineal synthesis has been reported in mammalian models during pregnancy, especially by the placenta tissue. MEL can regulate intracellular processes (e.g., G-proteins) and the activity of second messengers (e.g., cAMP, IP(3,) Ca(2+)). During neurodevelopment, these activities regulated by melatonin have an important role as an intracellular signaling for gene expression regulation. To review the role of MEL in neurodevelopment, we built interactome networks of different proteins that act in these processes using systems biology tools. The analyses of interactome networks revealed that MEL could modulate neurodevelopment through the regulation of Ca(2+) intracellular levels and influencing BMP/SMAD signaling, thus affecting neural gene responses and neuronal differentiation.

PMID: 21465271 http://www.ncbi.nlm.nih.gov/pubmed/21465271

2008

Tbx2b is required for the development of the parapineal organ

Development. 2008 May;135(9):1693-702. Epub 2008 Apr 2.

Snelson CD, Santhakumar K, Halpern ME, Gamse JT. Source Department of Biological Sciences, Vanderbilt University, VU Station B, Box 35-1634, Nashville, TN 37235, USA.

Abstract

Structural differences between the left and right sides of the brain exist throughout the vertebrate lineage. By studying the zebrafish pineal complex, which exhibits notable asymmetries, both the genes and the cell movements that result in left-right differences can be characterized. The pineal complex consists of the midline pineal organ and the left-sided parapineal organ. The parapineal is responsible for instructing the asymmetric architecture of the bilateral habenulae, the brain nuclei that flank the pineal complex. Using in vivo time-lapse confocal microscopy, we find that the cells that form the parapineal organ migrate as a cluster of cells from the pineal complex anlage to the left side of the brain. In a screen for mutations that disrupted brain laterality, we identified a nonsense mutation in the T-box2b (tbx2b) gene, which encodes a transcription factor expressed in the pineal complex anlage. The tbx2b mutant makes fewer parapineal cells, and they remain as individuals near the midline rather than migrating leftward as a group. The reduced number and incorrect placement of parapineal cells result in symmetric development of the adjacent habenular nuclei. We conclude that tbx2b functions to specify the correct number of parapineal cells and to regulate their asymmetric migration.

PMID: 18385257 http://www.ncbi.nlm.nih.gov/pubmed/18385257

1992

Fine structure of the pinealopetal innervation of the mammalian pineal gland

Microsc Res Tech. 1992 May 1;21(3):188-204.

Møller M. Source Department B, University of Copenhagen, Denmark.

Abstract

The mammalian pineal gland is innervated by peripheral sympathetic and parasympathetic nerve fibers as well as by nerve fibers originating in the central nervous system (central innervation). The perikarya of the sympathetic fibers are located in the superior cervical ganglia, while the fibers terminate in boutons containing small granular vesicles and a few large granular vesicles. Both noradrenaline and neuropeptide Y are contained in these neurons. The parasympathetic fibers originate from perikarya in the pterygopalatine ganglia. The neuropeptides, vasoactive intestinal peptide and peptide histidine isoleucine, are present in these fibers, the boutons of which contain small clear transmitter vesicles and larger granular vesicles. The fibers of the central innervation originate predominantly from perikarya located in hypothalamic and limbic forebrain structures as well as from perikarya in the optic system. These fibers terminate in boutons containing small clear and, in certain fibers, an abundant number of large granular vesicles. In rodents, the majority of the central fibers terminate in the deep pineal gland and the pineal stalk. From these areas impulses might be transmitted further caudally to the superficial pineal gland via neuronal structures or processes from pinealocytes. Several hypothalamic neuropeptides and monoamines might be contained in the central fibers. The intrapineal nerve fibers are located both in the perivascular spaces and intraparenchymally. The majority of the intraparenchymally located fibers terminate freely between the pinealocytes. However, some nerve terminals make synaptic contacts with the pinealocytes and in some species with intrapineal neurons. In fetal mammals, sympathetic, parasympathetic, and central fibers are also present. In addition, an unpaired nerve, connecting the caudal part of the pineal gland with the extreme rostral part of the mesencephalon, is present. This nerve is a homologue to the pineal nerve (nervus pinealis) observed in lower vertebrates.

PMID: 1606315