Talk:Developmental Signals - Homeobox

From Embryology
Revision as of 06:16, 29 November 2011 by S8600021 (talk | contribs) (→‎2005)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 19) Embryology Developmental Signals - Homeobox. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Developmental_Signals_-_Homeobox


Search All Databases hox

UNSW Embryology - Molecular Notes | Musculoskeletal Notes


PMID 20485555 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0010600


2009

Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis

Cell Stem Cell. 2009 Jun 5;4(6):559-67.

Hofmann I, Stover EH, Cullen DE, Mao J, Morgan KJ, Lee BH, Kharas MG, Miller PG, Cornejo MG, Okabe R, Armstrong SA, Ghilardi N, Gould S, de Sauvage FJ, McMahon AP, Gilliland DG. Source Division of Hematology, Department of Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.

Abstract

We report the unexpected finding that loss of Hh signaling through conditional deletion of Smoothened (Smo) in the adult hematopoietic compartment has no apparent effect on adult hematopoiesis, including peripheral blood count, number or cell-cycle status of stem or progenitor cells, hematopoietic colony-forming potential, long-term repopulating activity in competitive repopulation assays, or stress response to serial 5-fluorouracil treatment. Furthermore, pharmacologic inhibition of Hh signaling with a potent and selective small molecule antagonist has no substantive effect on hematopoiesis in the mouse. In addition, Hh signaling is not required for the development of MLL-AF9-mediated acute myeloid leukemia (AML). Taken together, these data demonstrate that Hh signaling is dispensable for normal hematopoietic development and hematopoietic stem cell function, indicating that targeting of Hh signaling in solid tumors is not likely to result in hematopoietic toxicity. Furthermore, the Hh pathway may not be a compelling target in certain hematopoietic malignancies.

Comment in Cell Stem Cell. 2009 Jun 5;4(6):470-1.

PMID 19497284

2006

Hox transcription factors and their elusive mammalian gene targets

Heredity. 2006 Aug;97(2):88-96. Epub 2006 May 24.

Svingen T, Tonissen KF. Source Cell Biology Group, Eskitis Institute for Cell and Molecular Therapies and School of Biomolecular and Biomedical Science, Griffith University, Nathan, Queensland 4111, Australia.

Abstract

The Hox family of homeodomain transcription factors regulate numerous pathways during developmental and normal cellular processes. All Hox proteins recognise similar sequences in vitro yet display functional diversity in an in vivo environment. This review focuses on the transcriptional and functional specificity elicited by Hox proteins, giving an overview of homeodomain-DNA interactions and the gain of binding specificity through cooperative binding with cofactors. Furthermore, currently identified mammalian Hox target genes are presented, of which the most striking feature is that very few direct Hox targets have been identified. The direct targets participate in an array of cellular functions including organogenesis and cellular differentiation, cell adhesion and migration and cell cycle and apoptotic pathways. A further assessment of identified mammalian promoter targets and the contribution of bases outside the canonical recognition motif is given, highlighting roles they may play in either trans-activation or repression by Hox proteins.

PMID 16721389

2005

Developmental regulation of the Hox genes during axial morphogenesis in the mouse

Development. 2005 Jul;132(13):2931-42.

Deschamps J, van Nes J. Source Hubrecht Laboratory, Netherlands Institute for Developmental Biology, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands. jacqueli@niob.knaw.nl

Abstract

The Hox genes confer positional information to the axial and paraxial tissues as they emerge gradually from the posterior aspect of the vertebrate embryo. Hox genes are sequentially activated in time and space, in a way that reflects their organisation into clusters in the genome. Although this co-linearity of expression of the Hox genes has been conserved during evolution, it is a phenomenon that is still not understood at the molecular level. This review aims to bring together recent findings that have advanced our understanding of the regulation of the Hox genes during mouse embryonic development. In particular, we highlight the integration of these transducers of anteroposterior positional information into the genetic network that drives tissue generation and patterning during axial elongation.

PMID 15944185