Talk:Carnegie stage 4

From Embryology
Revision as of 10:31, 17 February 2012 by S8600021 (talk | contribs)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 29) Embryology Carnegie stage 4. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Carnegie_stage_4

Potential image

Nature 443, 376-377 (28 September 2006) | doi:10.1038/443376a; Published online 27 September 2006

http://www.nature.com/nature/journal/v443/n7110/full/443376a.html

2011

2010

Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation

PLoS One. 2010 Apr 21;5(4):e10258.

Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T, Mardon HJ, Lokugamage AU, Rai R, Landles C, Roelen BA, Quenby S, Kuijk EW, Kavelaars A, Heijnen CJ, Regan L, Brosens JJ, Macklon NS.

Department of Reproductive Medicine and Gynecology, University Medical Center Utrecht, Utrecht, The Netherlands.

Abstract BACKGROUND: Pregnancy is widely viewed as dependent upon an intimate dialogue, mediated by locally secreted factors between a developmentally competent embryo and a receptive endometrium. Reproductive success in humans is however limited, largely because of the high prevalence of chromosomally abnormal preimplantation embryos. Moreover, the transient period of endometrial receptivity in humans uniquely coincides with differentiation of endometrial stromal cells (ESCs) into highly specialized decidual cells, which in the absence of pregnancy invariably triggers menstruation. The role of cyclic decidualization of the endometrium in the implantation process and the nature of the decidual cytokines and growth factors that mediate the crosstalk with the embryo are unknown.

METHODOLOGY/PRINCIPAL FINDINGS: We employed a human co-culture model, consisting of decidualizing ESCs and single hatched blastocysts, to identify the soluble factors involved in implantation. Over the 3-day co-culture period, approximately 75% of embryos arrested whereas the remainder showed normal development. The levels of 14 implantation factors secreted by the stromal cells were determined by multiplex immunoassay. Surprisingly, the presence of a developing embryo had no significant effect on decidual secretions, apart from a modest reduction in IL-5 levels. In contrast, arresting embryos triggered a strong response, characterized by selective inhibition of IL-1beta, -6, -10, -17, -18, eotaxin, and HB-EGF secretion. Co-cultures were repeated with undifferentiated ESCs but none of the secreted cytokines were affected by the presence of a developing or arresting embryo.

CONCLUSIONS: Human ESCs become biosensors of embryo quality upon differentiation into decidual cells. In view of the high incidence of gross chromosomal errors in human preimplantation embryos, cyclic decidualization followed by menstrual shedding may represent a mechanism of natural embryo selection that limits maternal investment in developmentally impaired pregnancies.

PMID: 20422011 http://www.ncbi.nlm.nih.gov/pubmed/20422011


http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0010258

Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss

Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, Mardon HJ, Lokugamage AU, Rai R, Landles C, Roelen BA, Quenby S, Kuijk EW, Kavelaars A, Heijnen CJ, Regan L, Macklon NS, Brosens JJ. PLoS One. 2010 Apr 21;5(4):e10287. PMID: 20422017


Studies on the mechanism of embryo implantation

[Article in Japanese]

Nippon Sanka Fujinka Gakkai Zasshi. 1996 Aug;48(8):591-603.

Tominaga T.

Department of Obstetrics and Gynecology, Fukui Medical School. Abstract Implantation is a complex process accomplished by synchronization and interactions between embryo and endometrium by local exchange of signals including a number of cytokines and growth factors and direct cell-cell and cell-matrix contact. However, the research in early events of human implantation is still in its infancy. This presentation comprises the results of our attempts to investigate the mechanisms of human implantation process in its early stage by cell-biological method, including establishment of experimental implantation model in vitro. 1. Human trophoblast of early stage of gestation showed active cell locomotion, active endocytosis, and invasion of endometrial cell monolayer in mixed cultures. Trophoblast invasion was later arrested by transformed endometrial cells similar to decidual cells in vivo. These results appeared to indicate the interactions between trophoblast and endometrial cells in implantation. 2. Coculture system of rabbit preimplantation blastocyst and endometrial epithelium reformed from isolated endometrial epithelial cells on basement membrane matrix (Matrigel) simulated the in vivo rabbit implantation processes. This coculture system may provide a useful experimental implantation model. 3. A human trophoblast cell line was established from chorionic tissues of normal early pregnancy. These cells were cytotrophoblast-like morphology and endocrine functions. They formed the villous structures similar to those in vivo in culture on Matrigel and invasion of Matrigel was observed. These indicated the extracellular matrix may affect the morphology and function of invading trophoblast in implantation site. 4. Human endometrial epithelial single cells were cultured on Matrigel. Reconstruction of gland followed by epithelium formation quite similar to in vivo structures by migration and proliferation of isolated cells was demonstrated. Height of gland was promoted by estrogen and initiation of epithelization was upregulated by platelet-derived growth factors. This system revealed the extracellular matrix regulated morphogenesis of endometrial epithelium in vivo and is an essential substrate in experimental implantation model of endometrial epithelium. 5. Parallel cultures of endometrial epithelial cells on Matrigel were carried out with the IVF. ET patients to evaluate the endometrial morphology at time of ET. Endometrial cultures were initiated in previous cycles on Matrigel and the sera of patients were added to her own cultures from 1st day of IVF treatment cycle. Evaluation of reformed epithelium revealed the apparently unsuitable morphology for implantation in group of patients who eventually failed in pregnancy. This system may provide a useful measures in evaluation of endometrial receptivity and modality of treatment for endometrial aberrations. 6. Cyclic changes of extracellular matrix components in endometrium were investigated. Collagen I, III, IV, V were immunohistochemically estimated. Relative levels of all types of collagen except for collagen V declined at early secretory phase. In rodents, not only collagen but also laminin and fibronectin levels declined at early secretory phase. These changes may facilitate trophoblast invasion of endometrium. Collagen V distributed in myometrial surface was found to consist of subunit (alpha 1)2 alpha 2 and trophoblast growth was inhibited on substrate of alpha 1 subunit. Collagen V in myometrial surface may have a role in blocking trophoblast invasion. 7. HGF (hepatocyte growth factor) mRNA was demonstrated to be expressed during menstruation and secretory phase in endometrium distinctly and its receptor in endometrial epithelial cells and decidual cells. Positive correlation between plasma HGF levels and ultrasonographic thickness of endometrium was observed at late secretory phase. Recombinant HGF promoted proliferation of endometrial epithelial cells and decidual cells and upregulated initiation of endometrial epithelization of Matrigel.

PMID: 8808827

http://www.ncbi.nlm.nih.gov/pubmed/8808827