Difference between revisions of "Talk:Cardiovascular System Development"

From Embryology
Line 1: Line 1:
 +
==A new role for the human placenta as a hematopoietic site throughout gestation.==
 +
 +
http://www.ncbi.nlm.nih.gov/pubmed/19208786
 +
 +
We investigated whether the human placenta contributes to embryonic and fetal hematopoietic development. Two cell populations--CD34(++)CD45(low) and CD34( +)CD45(low)--were found in chorionic villi. CD34(++) CD45(low) cells display many markers that are characteristic of multipotent primitive hematopoietic progenitors and hematopoietic stem cells. Clonogenic in vitro assays showed that CD34(++)CD45( low) cells contained colony-forming units-culture with myeloid and erythroid potential and differentiated into CD56(+) natural killer cells and CD19(+) B cells in culture. CD34(+)CD45(low) cells were mostly enriched in erythroid- and myeloid-committed progenitors. While the number of CD34(++)CD45(low) cells increased throughout gestation in parallel with placental mass. However, their density (cells per gram of tissue) reached its peak at 5 to 8 weeks, decreasing more than 7-fold from the ninth week onward. In addition to multipotent progenitors, the placenta contained intermediate progenitors, indicative of active hematopoiesis. Together, these data suggest that the human placenta is potentially an important hematopoietic organ, opening the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.
 +
 +
 
* '''Endothelial cell lineages of the heart.'''  Ishii Y, Langberg J, Rosborough K, Mikawa T. Cell Tissue Res. 2009 Jan;335(1):67-73. Epub 2008 Aug 6. Review. [http://www.ncbi.nlm.nih.gov/pubmed/18682987 PMID: 18682987] | [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729171/?tool=pubmed PMC: 2729171]
 
* '''Endothelial cell lineages of the heart.'''  Ishii Y, Langberg J, Rosborough K, Mikawa T. Cell Tissue Res. 2009 Jan;335(1):67-73. Epub 2008 Aug 6. Review. [http://www.ncbi.nlm.nih.gov/pubmed/18682987 PMID: 18682987] | [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729171/?tool=pubmed PMC: 2729171]
  

Revision as of 08:25, 31 May 2010

A new role for the human placenta as a hematopoietic site throughout gestation.

http://www.ncbi.nlm.nih.gov/pubmed/19208786

We investigated whether the human placenta contributes to embryonic and fetal hematopoietic development. Two cell populations--CD34(++)CD45(low) and CD34( +)CD45(low)--were found in chorionic villi. CD34(++) CD45(low) cells display many markers that are characteristic of multipotent primitive hematopoietic progenitors and hematopoietic stem cells. Clonogenic in vitro assays showed that CD34(++)CD45( low) cells contained colony-forming units-culture with myeloid and erythroid potential and differentiated into CD56(+) natural killer cells and CD19(+) B cells in culture. CD34(+)CD45(low) cells were mostly enriched in erythroid- and myeloid-committed progenitors. While the number of CD34(++)CD45(low) cells increased throughout gestation in parallel with placental mass. However, their density (cells per gram of tissue) reached its peak at 5 to 8 weeks, decreasing more than 7-fold from the ninth week onward. In addition to multipotent progenitors, the placenta contained intermediate progenitors, indicative of active hematopoiesis. Together, these data suggest that the human placenta is potentially an important hematopoietic organ, opening the possibility of banking placental hematopoietic stem cells along with cord blood for transplantation.


  • Endothelial cell lineages of the heart. Ishii Y, Langberg J, Rosborough K, Mikawa T. Cell Tissue Res. 2009 Jan;335(1):67-73. Epub 2008 Aug 6. Review. PMID: 18682987 | PMC: 2729171

The links in this next sections are to the original 2008 online notes pages for Cardiovascular System Development.

Cardiovascular Notes Introduction | Abnormalities | Stage 13/14 | Stage 22 | Stage 22 Selected Highpower | Heart | Heart Rate | BloodBlood Vessels | Molecular | Lymphatic | Text only page | WWW Links | Postnatal | History - Harvey

Cardiovascular Movies Heart Movies | Heart Looping | Atrial Septation | Realignment | Ventricular Septation | Heart Septation Models | Historic Heart Movie |

Other Cardiac and Vascular Movies Fetal Circulation (Before Birth) | Circulation (After Birth) | Aortic Branches to Glands (Kidneys only) | Aortic Branches to Glands (Gonads only)


Coronary Vessels

  • Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development.[1] Lie-Venema H, van den Akker NM, Bax NA, Winter EM, Maas S, Kekarainen T, Hoeben RC, deRuiter MC, Poelmann RE, Gittenberger-de Groot AC. ScientificWorldJournal. 2007 Nov 12;7:1777-98. Review. PMID: 18040540 | PDF full article
  • Cellular and molecular mechanisms of coronary vessel development.[2] Mu H, Ohashi R, Lin P, Yao Q, Chen C. Vasc Med. 2005 Feb;10(1):37-44. Review. PMID: 15920999


http://www.mediawiki.org/wiki/Extension:Pubmed

References

  1. <pubmed>18040540</pubmed>
  2. <pubmed>15920999</pubmed>