Talk:Cardiovascular System - Heart Development: Difference between revisions

From Embryology
No edit summary
Line 20: Line 20:


PMID 21558385
PMID 21558385
==1997==
===Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations===
Dev Dyn. 1997 Jan;208(1):34-47.
Kirby ML, Hunt P, Wallis K, Thorogood P.
Source
Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912-2000, USA.
Abstract
Ablation of the cardiac neural crest results in abnormal development of the aortic arch arteries leading to altered patterning of the great arteries. The cardiac outflow tract is also affected after neural crest ablation because normally a subset of neural crest cells migrates from the pharyngeal region to form the outflow septum. Using neural crest ablation, it has not been possible to separate the occurrence of aortic arch maldevelopment from cardiac outflow tract dysmorphogenesis. In order to determine whether normal aortic arch artery development is a prerequisite for normal outflow tract development, we have used a combination of antisense treatment with backtransplantation of cardiac neural folds to produce abnormal patterning of the aortic arch arteries. Paralogous groups of Hox messages with their anterior expression domains in pharyngeal arches 3, 4 and 6 were targeted. Antisense targeted to paralogous group 3 Hox message caused aortic arch 3 located within the pharyngeal arch to regress in a manner similar to aortic arch 2, while antisense targeted to paralogous group 5 Hox message caused the appearance of an additional pharyngeal arch containing a novel and completely independent aortic arch artery. Antisense treatment targeting paralogous group 4 Hox message led to no detectable cardiovascular phenotype in the first 6 days of development. While regression of arch artery 3 was associated with abnormal branching patterns of the aorta and pulmonary trunk, this did not involve abnormal separation of the aorta and pulmonary trunks, the semilunar valves or the subvalvular region of the outflow tract. Because none of these changes in pharyngeal or aortic arch artery development was accompanied by abnormal development of the cardiac outflow tract, it appears that normal patterning of the aortic arch arteries is not a prerequisite for normal heart development. Using reverse transcription polymerase chain reaction (RT-PCR) we were unable to detect changes in any of the Hox messages except group 4, thus, using this particular experimental strategy, we are unable to demonstrate or refute that expression of hox genes by cardiac neural crest cells controls aortic arch patterning. Development of the cardiac outflow tract was normal in each instance. This suggests that abnormal aortic arch patterning does not necessarily lead to cardiac malformations.
PMID 8989519

Revision as of 18:12, 4 October 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 28) Embryology Cardiovascular System - Heart Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Cardiovascular_System_-_Heart_Development


Coronary vessel development: a unique form of vasculogenesis. http://www.ncbi.nlm.nih.gov/pubmed/14525796


2011

Zebrafish cardiac development requires a conserved secondary heart field

Development. 2011 Jun;138(11):2389-98.

Hami D, Grimes AC, Tsai HJ, Kirby ML. Source Department of Pediatrics, Duke University, Durham, NC 27710, USA.

Abstract

The secondary heart field is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the definitive cardiac arterial pole. This field is part of the overall heart field and its myocardial component has been fate mapped from the epiblast to the heart in both mammals and birds. In this study we show that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field, and contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. We also show that Isl1, a transcription factor associated with undifferentiated cells in the secondary heart field in other species, is active in this field. Furthermore, Bmp signaling promotes myocardial differentiation from the arterial pole progenitor population, whereas inhibiting Smad1/5/8 phosphorylation leads to reduced myocardial differentiation with subsequent increased smooth muscle differentiation. Molecular pathways required for secondary heart field development are conserved in teleosts, as we demonstrate that the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole.

PMID 21558385

1997

Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations

Dev Dyn. 1997 Jan;208(1):34-47.

Kirby ML, Hunt P, Wallis K, Thorogood P. Source Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta 30912-2000, USA.

Abstract

Ablation of the cardiac neural crest results in abnormal development of the aortic arch arteries leading to altered patterning of the great arteries. The cardiac outflow tract is also affected after neural crest ablation because normally a subset of neural crest cells migrates from the pharyngeal region to form the outflow septum. Using neural crest ablation, it has not been possible to separate the occurrence of aortic arch maldevelopment from cardiac outflow tract dysmorphogenesis. In order to determine whether normal aortic arch artery development is a prerequisite for normal outflow tract development, we have used a combination of antisense treatment with backtransplantation of cardiac neural folds to produce abnormal patterning of the aortic arch arteries. Paralogous groups of Hox messages with their anterior expression domains in pharyngeal arches 3, 4 and 6 were targeted. Antisense targeted to paralogous group 3 Hox message caused aortic arch 3 located within the pharyngeal arch to regress in a manner similar to aortic arch 2, while antisense targeted to paralogous group 5 Hox message caused the appearance of an additional pharyngeal arch containing a novel and completely independent aortic arch artery. Antisense treatment targeting paralogous group 4 Hox message led to no detectable cardiovascular phenotype in the first 6 days of development. While regression of arch artery 3 was associated with abnormal branching patterns of the aorta and pulmonary trunk, this did not involve abnormal separation of the aorta and pulmonary trunks, the semilunar valves or the subvalvular region of the outflow tract. Because none of these changes in pharyngeal or aortic arch artery development was accompanied by abnormal development of the cardiac outflow tract, it appears that normal patterning of the aortic arch arteries is not a prerequisite for normal heart development. Using reverse transcription polymerase chain reaction (RT-PCR) we were unable to detect changes in any of the Hox messages except group 4, thus, using this particular experimental strategy, we are unable to demonstrate or refute that expression of hox genes by cardiac neural crest cells controls aortic arch patterning. Development of the cardiac outflow tract was normal in each instance. This suggests that abnormal aortic arch patterning does not necessarily lead to cardiac malformations.

PMID 8989519