Talk:Cardiovascular System - Blood Vessel Development: Difference between revisions

From Embryology
No edit summary
Line 1: Line 1:
{{Talk Page}}
{{Talk Page}}
==2012==
===Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling===
Proc Natl Acad Sci U S A. 2012 May 1;109(18):6993-6998. Epub 2012 Apr 16.
Chang L, Noseda M, Higginson M, Ly M, Patenaude A, Fuller M, Kyle AH, Minchinton AI, Puri MC, Dumont DJ, Karsan A.
Source
Genome Sciences Centre, Integrative Oncology Department, and Cancer Genetics Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3.
Abstract
Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1(+)CD31(dim)vascular endothelial (VE)-cadherin(-)CD45(-) precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1(+) precursor cell, but not the VE-cadherin(+) endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1(+) precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1(+) local precursor to VSMC in a spatiotemporal fashion across all vascular beds.
PMID 22509029


==2010==
==2010==
Line 9: Line 24:
The groundbreaking discovery about arterial and venous expression of ephrinB2 and EphB4, respectively, in early embryonic development has led to a new paradigm for vascular research, providing compelling evidence that arterial and venous endothelial cells are established by genetic mechanisms before circulation begins. For arterial specification, vascular endothelial growth factor (VEGF) induces expression of Notch signaling genes, including Notch1 and its ligand, Delta-like 4 (Dll4), and Foxc1 and Foxc2 transcription factors directly regulate Dll4 expression. Upon activation of Notch signaling, the Notch downstream genes, Hey1/2 in mice or gridlock in zebrafish, further promote arterial differentiation. On the other hand, the orphan nuclear receptor COUP-TFII is a determinant factor for venous specification by inhibiting expression of arterial specific genes, including Nrp1 and Notch. After arterial and venous endothelial cells differentiate, a subpopulation of venous endothelial cells is thought to become competent to acquire lymphatic endothelial cell fate by progressively expressing the transcription factors Sox18 and Prox1 to differentiate into lymphatic endothelial cells. Therefore, it has now evident that arterial-venous cell fate determination and subsequent lymphatic development are regulated by the multi-step regulatory system associated with the key signaling pathways and transcription factors. Furthermore, new signaling molecules as additional regulators in these processes have recently been identified. As the mechanistic basis for a link between signaling pathways and transcriptional networks in arterial, venous and lymphatic endothelial cells begins to be uncovered, it is now time to summarize the literature on this exciting topic and provide perspectives for future research in the field.
The groundbreaking discovery about arterial and venous expression of ephrinB2 and EphB4, respectively, in early embryonic development has led to a new paradigm for vascular research, providing compelling evidence that arterial and venous endothelial cells are established by genetic mechanisms before circulation begins. For arterial specification, vascular endothelial growth factor (VEGF) induces expression of Notch signaling genes, including Notch1 and its ligand, Delta-like 4 (Dll4), and Foxc1 and Foxc2 transcription factors directly regulate Dll4 expression. Upon activation of Notch signaling, the Notch downstream genes, Hey1/2 in mice or gridlock in zebrafish, further promote arterial differentiation. On the other hand, the orphan nuclear receptor COUP-TFII is a determinant factor for venous specification by inhibiting expression of arterial specific genes, including Nrp1 and Notch. After arterial and venous endothelial cells differentiate, a subpopulation of venous endothelial cells is thought to become competent to acquire lymphatic endothelial cell fate by progressively expressing the transcription factors Sox18 and Prox1 to differentiate into lymphatic endothelial cells. Therefore, it has now evident that arterial-venous cell fate determination and subsequent lymphatic development are regulated by the multi-step regulatory system associated with the key signaling pathways and transcription factors. Furthermore, new signaling molecules as additional regulators in these processes have recently been identified. As the mechanistic basis for a link between signaling pathways and transcriptional networks in arterial, venous and lymphatic endothelial cells begins to be uncovered, it is now time to summarize the literature on this exciting topic and provide perspectives for future research in the field.


PMID: 20238301
PMID 20238301
http://www.ncbi.nlm.nih.gov/pubmed/20238301


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899674
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899674
Line 24: Line 38:
The aim of this study was to find basic rules governing the morphological development of the typical neurovascular sheath. We carried out histological examination of 15 paraffin-embedded mid-term fetuses at 9-25 weeks of gestation (three fetuses each at 9, 12, 15, 20, and 25 weeks). As the result, the vagus nerve showed a high propensity to change its topographical relationship with the common carotid artery (CCA) during 9-20 weeks of gestation: that is, from a primitive ventral course to a final dorsal course. The adventitia of the great arteries, which was distinct from other fascial structures, became evident by 15 weeks. The carotid sheath appeared at and after 20 weeks: it was clearly separated from the prevertebral lamina of the deep cervical fasciae, but fused with the pretracheal lamina covering the strap muscles. Thus the carotid sheath, as well as the topographical relationships of structures within it, seems to become established much later than the prevertebral and pretracheal laminae of the deep cervical fasciae. However, the adventitia of the cervical great arteries consistently becomes evident much earlier than the sheath, and it seems to be regarded as one of the basic components of the fetal deep cervical fasciae.
The aim of this study was to find basic rules governing the morphological development of the typical neurovascular sheath. We carried out histological examination of 15 paraffin-embedded mid-term fetuses at 9-25 weeks of gestation (three fetuses each at 9, 12, 15, 20, and 25 weeks). As the result, the vagus nerve showed a high propensity to change its topographical relationship with the common carotid artery (CCA) during 9-20 weeks of gestation: that is, from a primitive ventral course to a final dorsal course. The adventitia of the great arteries, which was distinct from other fascial structures, became evident by 15 weeks. The carotid sheath appeared at and after 20 weeks: it was clearly separated from the prevertebral lamina of the deep cervical fasciae, but fused with the pretracheal lamina covering the strap muscles. Thus the carotid sheath, as well as the topographical relationships of structures within it, seems to become established much later than the prevertebral and pretracheal laminae of the deep cervical fasciae. However, the adventitia of the cervical great arteries consistently becomes evident much earlier than the sheath, and it seems to be regarded as one of the basic components of the fetal deep cervical fasciae.


PMID: 20169562
PMID 20169562




Line 108: Line 122:
The airways would seem to act as a template for pulmonary artery development.  
The airways would seem to act as a template for pulmonary artery development.  


PMID: 10919986
PMID 10919986
http://www.ncbi.nlm.nih.gov/pubmed/10919986


http://ajrcmb.atsjournals.org/cgi/content/full/23/2/194
http://ajrcmb.atsjournals.org/cgi/content/full/23/2/194

Revision as of 13:01, 3 May 2012

About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 19) Embryology Cardiovascular System - Blood Vessel Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Cardiovascular_System_-_Blood_Vessel_Development

2012

Differentiation of vascular smooth muscle cells from local precursors during embryonic and adult arteriogenesis requires Notch signaling

Proc Natl Acad Sci U S A. 2012 May 1;109(18):6993-6998. Epub 2012 Apr 16.

Chang L, Noseda M, Higginson M, Ly M, Patenaude A, Fuller M, Kyle AH, Minchinton AI, Puri MC, Dumont DJ, Karsan A. Source Genome Sciences Centre, Integrative Oncology Department, and Cancer Genetics Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada V5Z 1L3.

Abstract

Vascular smooth muscle cells (VSMC) have been suggested to arise from various developmental sources during embryogenesis, depending on the vascular bed. However, evidence also points to a common subpopulation of vascular progenitor cells predisposed to VSMC fate in the embryo. In the present study, we use binary transgenic reporter mice to identify a Tie1(+)CD31(dim)vascular endothelial (VE)-cadherin(-)CD45(-) precursor that gives rise to VSMC in vivo in all vascular beds examined. This precursor does not represent a mature endothelial cell, because a VE-cadherin promoter-driven reporter shows no expression in VSMC during murine development. Blockade of Notch signaling in the Tie1(+) precursor cell, but not the VE-cadherin(+) endothelial cell, decreases VSMC investment of developing arteries, leading to localized hemorrhage in the embryo at the time of vascular maturation. However, Notch signaling is not required in the Tie1(+) precursor after establishment of a stable artery. Thus, Notch activity is required in the differentiation of a Tie1(+) local precursor to VSMC in a spatiotemporal fashion across all vascular beds.

PMID 22509029

2010

Specification of arterial, venous, and lymphatic endothelial cells during embryonic development

Kume T. Histol Histopathol. 2010 May;25(5):637-46. Review.

The groundbreaking discovery about arterial and venous expression of ephrinB2 and EphB4, respectively, in early embryonic development has led to a new paradigm for vascular research, providing compelling evidence that arterial and venous endothelial cells are established by genetic mechanisms before circulation begins. For arterial specification, vascular endothelial growth factor (VEGF) induces expression of Notch signaling genes, including Notch1 and its ligand, Delta-like 4 (Dll4), and Foxc1 and Foxc2 transcription factors directly regulate Dll4 expression. Upon activation of Notch signaling, the Notch downstream genes, Hey1/2 in mice or gridlock in zebrafish, further promote arterial differentiation. On the other hand, the orphan nuclear receptor COUP-TFII is a determinant factor for venous specification by inhibiting expression of arterial specific genes, including Nrp1 and Notch. After arterial and venous endothelial cells differentiate, a subpopulation of venous endothelial cells is thought to become competent to acquire lymphatic endothelial cell fate by progressively expressing the transcription factors Sox18 and Prox1 to differentiate into lymphatic endothelial cells. Therefore, it has now evident that arterial-venous cell fate determination and subsequent lymphatic development are regulated by the multi-step regulatory system associated with the key signaling pathways and transcription factors. Furthermore, new signaling molecules as additional regulators in these processes have recently been identified. As the mechanistic basis for a link between signaling pathways and transcriptional networks in arterial, venous and lymphatic endothelial cells begins to be uncovered, it is now time to summarize the literature on this exciting topic and provide perspectives for future research in the field.

PMID 20238301

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2899674


Fetal anatomy of the human carotid sheath and structures in and around it

Anat Rec (Hoboken). 2010 Mar;293(3):438-45.

Miyake N, Hayashi S, Kawase T, Cho BH, Murakami G, Fujimiya M, Kitano H.

Department of Otorhinolaryngology, Tottori University, Yonago, Japan. Abstract The aim of this study was to find basic rules governing the morphological development of the typical neurovascular sheath. We carried out histological examination of 15 paraffin-embedded mid-term fetuses at 9-25 weeks of gestation (three fetuses each at 9, 12, 15, 20, and 25 weeks). As the result, the vagus nerve showed a high propensity to change its topographical relationship with the common carotid artery (CCA) during 9-20 weeks of gestation: that is, from a primitive ventral course to a final dorsal course. The adventitia of the great arteries, which was distinct from other fascial structures, became evident by 15 weeks. The carotid sheath appeared at and after 20 weeks: it was clearly separated from the prevertebral lamina of the deep cervical fasciae, but fused with the pretracheal lamina covering the strap muscles. Thus the carotid sheath, as well as the topographical relationships of structures within it, seems to become established much later than the prevertebral and pretracheal laminae of the deep cervical fasciae. However, the adventitia of the cervical great arteries consistently becomes evident much earlier than the sheath, and it seems to be regarded as one of the basic components of the fetal deep cervical fasciae.

PMID 20169562


<pubmed>17259973</pubmed>"In sprouting angiogenesis, specialized endothelial tip cells lead the outgrowth of blood-vessel sprouts towards gradients of vascular endothelial growth factor (VEGF)-A. ...suggest that Dll4-Notch1 signalling between the endothelial cells within the angiogenic sprout serves to restrict tip-cell formation in response to VEGF, thereby establishing the adequate ratio between tip and stalk cells required for correct sprouting and branching patterns."

<pubmed>16799567</pubmed>"More than 25 years ago, in some of the first endothelial cell culture experiments in vitro, Folkman and Haudenschild described "longitudinal vacuoles" that "appeared to be extruded and connected from one cell to the next" "...Here we use high-resolution time-lapse two-photon imaging of transgenic zebrafish to examine how endothelial tubes assemble in vivo, comparing our results with time-lapse imaging of human endothelial-cell tube formation in three-dimensional collagen matrices in vitro. Our results provide strong support for a model in which the formation and intracellular and intercellular fusion of endothelial vacuoles drives vascular lumen formation."

[1]

2009

Sonic hedgehog is required for the assembly and remodeling of branchial arch blood vessels

Dev Dyn. 2008 Jul;237(7):1923-34.

Kolesová H, Roelink H, Grim M. Source Institute of Anatomy, First Faculty of Medicine, Charles University, Prague, Prague, Czech Republic.

Abstract

Sonic hedgehog (Shh) is a morphogen involved in many developmental processes. Injection of cells (5E1) that produce a Shh-blocking antibody causes an attenuation of the Shh response, and this causes vascular malformations and impaired remodeling characterized by hemorrhages and protrusions of the anterior cardinal vein and outflow tract, delayed fusion of the dorsal aortae, impaired branching of the internal carotid artery, and delayed remodeling of the aortic arches. Distribution of smooth muscle cells in the vessel wall is unchanged. In 5E1-injected embryos, we also observed impaired assembly of endothelial cells into vascular tubes, particularly in the sixth branchial arch, around the anterior cardinal vein and around the dorsal aorta. In 5E1-treated embryos, increased numbers of macrophage-like cells, apoptotic cells, and a decreased level of proliferation were observed in head mesenchyme. Together, these observations show that Shh signaling is required at multiple stages for proper vessel formation and remodeling.

PMID 18570256

Morphometric and volumetric analysis of the middle cerebral artery in human fetuses

Acta Neurobiol Exp (Wars). 2009;69(1):129-37.


Gielecki J, Zurada A, Kozłowska H, Nowak D, Loukas M. Source Department of Anatomy, Medical Faculty of the University of Warmia and Masuria, Olsztyn, Poland. jgielecki@gmail.com

Abstract

The morphometrical and volumetrical changes of the middle cerebral artery (MCA) during the fetal period of development were analyzed by digital-image analysis system (DIAS). Examinations were performed on 304 MCAs from 152 brains of human fetuses ranging from the 12th to 40th weeks of gestation. MCAs were analyzed with respect to its branching from the internal carotid artery and its division into the main cortical branches. No statistically significant differences were found between the mean values of the diameter, length and volume of the left and right M1 segments of the MCAs in all studied age groups.

PMID 19325646

http://www.ane.pl/linkout.php?pii=6912

2002

Origin, differentiation, and maturation of human pulmonary veins

Am J Respir Cell Mol Biol. 2002 Mar;26(3):333-40.

Hall SM, Hislop AA, Haworth SG.

Unit of Vascular Biology and Pharmacology, Institute of Child Health, University College, London, United Kingdom. S.Hall@ich.ucl.ac.uk Abstract Recent studies on human embryonic and fetal lungs show that the pulmonary arteries form by vasculogenesis. Little is known of the early development of the pulmonary veins. Using immunohistochemical techniques and serial reconstruction, we studied 18 fetal and neonatal lungs. Sections were stained with antibodies specific for endothelium (CD31, von Willebrand factor) and smooth muscle (alpha and gamma smooth muscle actin, smooth muscle myosin, calponin, caldesmon, and desmin) and antibodies specific for the matrix glycoprotein tenascin, the receptor protein tyrosine kinase EphB4, and its ligand ephrinB2. Kiel University-raised antibody number 67 (Ki67) expression allowed qualitative assessment of cell replication. By 34 d gestation, there was continuity between the aortic sac, pulmonary arteries, capillaries, pulmonary veins, and atrium. The pulmonary veins formed by vasculogenesis in the mesenchyme surrounding the terminal buds during the pseudoglandular period and probably by angiogenesis in the canalicular and alveolar stages. EphB4 and ephrinB2 did not distinguish between presumptive venous and arterial endothelium as they do in mouse. All venous smooth muscle cells derived directly from the mesenchyme, gradually acquiring smooth muscle specific proteins from 56 d gestation. Thus, both pulmonary arteries and veins arise by vasculogenesis, but the origins of their smooth muscle cells and their cytoskeletal protein content are different.

PMID 11867341


http://ajrcmb.atsjournals.org/cgi/content/full/26/3/333

2000

Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation

Am J Respir Cell Mol Biol. 2000 Aug;23(2):194-203.

Hall SM, Hislop AA, Pierce CM, Haworth SG.

Unit of Vascular Biology and Pharmacology, Cardiovascular and Respiratory Sciences, Institute of Child Health, University College of London, London, United Kingdom.

Abstract Recent studies on the morphogenesis of the pulmonary arteries have focused on nonhuman species such as the chick and the mouse. Using immunohistochemical techniques, we have studied 16 lungs from human embryos and fetuses from 28 d of gestation to newborn, using serial sections stained with a panel of antibodies specific for endothelium, smooth muscle, and extracellular matrix proteins. Cell replication was also assessed. Serial reconstruction showed a continuity of circulation between the heart and the capillary plexus from at least 38 d of gestation. The intrapulmonary arteries appeared to be derived from a continuous expansion of the primary capillary plexus that is from within the mesenchyme, by vasculogenesis. The arteries formed by continuous coalescence of endothelial tubes alongside the newly formed airway. Findings were consistent with the pulmonary arterial smooth muscle cells being derived from three sites in a temporally distinct sequence: the earliest from the bronchial smooth muscle, later from the mesenchyme surrounding the arteries, and last from the endothelial cells. Despite their different origins, all smooth muscle cells followed the same sequence of expression of smooth muscle-specific cytoskeletal proteins with increasing age. The order of appearance of these maturing proteins was from the subendothelial cells outward across the vessel wall and from hilum to periphery. The airways would seem to act as a template for pulmonary artery development. This study provides a framework for studying the signaling mechanisms controlling the various aspects of lung development.

intrapulmonary arteries

  • appeared to be derived from a continuous expansion of the primary capillary plexus from within the mesenchyme, by vasculogenesis.
  • arteries formed by continuous coalescence of endothelial tubes alongside the newly formed airway.

pulmonary arterial smooth muscle cells derived from three sites in a temporally distinct sequence

  1. earliest from the bronchial smooth muscle
  2. from the mesenchyme surrounding the arteries
  3. last from the endothelial cells.
  • all smooth muscle cells followed the same sequence of expression of smooth muscle-specific cytoskeletal proteins with increasing age.
  • order of appearance of these maturing proteins was from the subendothelial cells outward across the vessel wall and from hilum to periphery.

The airways would seem to act as a template for pulmonary artery development.

PMID 10919986

http://ajrcmb.atsjournals.org/cgi/content/full/23/2/194

  1. <pubmed>16794034</pubmed>