About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 24) Embryology Baboon Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Baboon_Development

2007

Application of Carnegie stages of development to unify human and baboon ultrasound findings early in pregnancy

Ultrasound Med Biol. 2007 Sep;33(9):1400-5. Epub 2007 Jun 11.

Santolaya-Forgas J, De Leon-Luis J, Friel LA, Wolf R. Source Center for Fetal Medicine and Prenatal Genetics, Brigham and Women's Hospital, Boston, MA 02115, and Department of Obstetrics and Gynecology, Texas Tech University and Health Science Center, Amarillo, USA. jsantolaya@partners.org

Abstract

The objective of this study was to determine if very early ultrasonographic measurements obtained from human and baboon are comparable. For this purpose, the gestational, amniotic and yolk sacs, embryonic crown rump length (CRL) and heart rate were measured ultrasonographically between 35 and 47 days from the mean day of a three-day mating period in baboons (n=18) and between 42 to 58 days from fertilization as calculated from the CRL measurements in human pregnancies (n=82). Ultrasonographic measurements from both species were then plotted in the same graph using Carnegie stages of embryonic development as the independent variable to allow for visual comparisons. Mean gestational age at ultrasonographic studies was significantly different for humans and baboons (50.4 vs. 41 days, respectively; p>0.01). Significant correlations (p>0.01) were noted between ultrasonographic measurements and Carnegie stages of development in both humans and baboons. Only the gestational and the yolk sacs were significantly smaller in baboons than in humans (p>0.05). The findings that embryonic CRL, extra-embryonic space and heart rate are very similar between the 17th and 23rd Carnegie developmental stages make the baboon a promising surrogate of human pregnancy for investigations using celocentesis.

PMID 17561331

http://www.umbjournal.org/article/S0301-5629(07)00135-4/abstract

1997

Transvaginal ultrasonographic (TVS) evaluation of baboon gestation from 37-62 days postconception

Am J Primatol. 1997;43(4):323-8.

Santolaya-Forgas J, Vengalil S, Meyer W, Fortman J. Source Department of Obstetrics and Gynecology, School of Medicine, University of Illinois at Chicago 60612, USA.

Abstract

Our objective was to determine the growth of the embryo and surrounding structures during baboon (Papio anubis) gestation using transvaginal sonography (TVS). To this end, we evaluated 19 timed-mated baboons using TVS between 37 and 62 days of gestation. After visualization of the gestational sac, amniotic sac, and yolk sac, the three largest diameters of each of these extra embryonic structures were measured using longitudinal and transverse views. Embryonic crown-rump length (CRL) was also recorded. Embryonic heart rates were determined using the M-mode function of the ultrasound equipment. All 19 gestations developed without complications. No significant trend could be demonstrated for heart rate or yolk sac diameters over the 37-62 day gestational age period. Mean (SD) gestational age in days, heart rate, and yolk sac diameter, respectively, for the group were 48 (7.8) days (range: 37-61), 180 (15) beats per minute (range: 156-221) and 5 (0.1) mm (range: 3-8). Significant correlations (P < 0.0001) were determined between gestational age and CRL and gestational and amniotic sacs. We conclude that TVS allows a clear visualization of the embryo proper and all the cavities within the gestational sac of the baboon gestation. This study has determined the normal pattern of changes of these cavities from 37-62 days of gestation. Future applications of these findings may include sampling fluid from these cavities for biochemical, cytological, and metabolic studies.

PMID 9403096