Talk:Abnormal Development - Malaria

From Embryology
Revision as of 07:31, 26 February 2013 by Z8600021 (talk | contribs) (→‎2013)
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 19) Embryology Abnormal Development - Malaria. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Abnormal_Development_-_Malaria

10 Most Recent Papers

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Placental Malaria

<pubmed limit=5>Placental Malaria</pubmed>

Maternal Malaria

<pubmed limit=5>Maternal Malaria</pubmed>


2013

Intravital placenta imaging reveals microcirculatory dynamics impact on sequestration and phagocytosis of Plasmodium-infected erythrocytes

PLoS Pathog. 2013 Jan;9(1):e1003154. doi: 10.1371/journal.ppat.1003154. Epub 2013 Jan 31.

de Moraes LV, Tadokoro CE, Gómez-Conde I, Olivieri DN, Penha-Gonçalves C. Source Instituto Gulbenkian de Ciência, Oeiras, Portugal.

Abstract

Malaria in pregnancy is exquisitely aggressive, causing a range of adverse maternal and fetal outcomes prominently linked to Plasmodium-infected erythrocyte cytoadherence to fetal trophoblast. To elucidate the physiopathology of infected erythrocytes (IE) sequestration in the placenta we devised an experimental system for intravital placental examination of P. berghei-infected mice. BALB/c females were mated to C57Bl/6 CFP+ male mice and infected with GFP+ P. berghei IE, and at gestational day 18, placentas were exposed for time-lapse imaging acquisition under two-photon microscopy. Real-time images and quantitative measurements revealed that trophoblast conformational changes transiently restrain blood flow in the mouse placental labyrinth. The complex dynamics of placental microcirculation promotes IE accumulation in maternal blood spaces with low blood flow and allows the establishment of stable IE-trophoblast contacts. Further, we show that the fate of sequestered IE includes engulfment by both macrophagic and trophoblastic fetal-derived cells. These findings reinforce the current paradigm that IE interact with the trophoblast and provide definitive evidence on two novel pathogenesis mechanisms: (1) trophoblast layer controls placental microcirculation promoting IE sequestration; and (2) fetal-derived placental cells engulf sequestered IE.

PMID 23382682


Does malaria affect placental development? Evidence from in vitro models

PLoS One. 2013;8(1):e55269. doi: 10.1371/journal.pone.0055269. Epub 2013 Jan 31.

Umbers AJ, Stanisic DI, Ome M, Wangnapi R, Hanieh S, Unger HW, Robinson LJ, Lufele E, Baiwog F, Siba PM, King CL, Beeson JG, Mueller I, Aplin JD, Glazier JD, Rogerson SJ. Source Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia. Abstract BACKGROUND: Malaria in early pregnancy is difficult to study but has recently been associated with fetal growth restriction (FGR). The pathogenic mechanisms underlying malarial FGR are poorly characterized, but may include impaired placental development. We used in vitro methods that model migration and invasion of placental trophoblast into the uterine wall to investigate whether soluble factors released into maternal blood in malaria infection might impair placental development. Because trophoblast invasion is enhanced by a number of hormones and chemokines, and is inhibited by pro-inflammatory cytokines, many of which are dysregulated in malaria in pregnancy, we further compared concentrations of these factors in blood between malaria-infected and uninfected pregnancies. METHODOLOGY/PRINCIPAL FINDINGS: We measured trophoblast invasion, migration and viability in response to treatment with serum or plasma from two independent cohorts of Papua New Guinean women infected with Plasmodium falciparum or Plasmodium vivax in early pregnancy. Compared to uninfected women, serum and plasma from women with P. falciparum reduced trophoblast invasion (P = .06) and migration (P = .004). P. vivax infection did not alter trophoblast migration (P = .64). The P. falciparum-specific negative effect on placental development was independent of trophoblast viability, but associated with high-density infections. Serum from P. falciparum infected women tended to have lower levels of trophoblast invasion promoting hormones and factors and higher levels of invasion-inhibitory inflammatory factors. CONCLUSION/SIGNIFICANCE: We demonstrate that in vitro models of placental development can be adapted to indirectly study the impact of malaria in early pregnancy. These infections could result in impaired trophoblast invasion with reduced transformation of maternal spiral arteries due to maternal hormonal and inflammatory disturbances, which may contribute to FGR by limiting the delivery of maternal blood to the placenta. Future prevention strategies for malaria in pregnancy should include protection in the first half of pregnancy.

PMID 23383132

Malaria in pregnancy

Mediterr J Hematol Infect Dis. 2013;5(1):e2013010. doi: 10.4084/MJHID.2013.010. Epub 2013 Jan 2.

Takem EN, D'Alessandro U. Source Medical Research Council Unit, Fajara, The Gambia.

Abstract

Pregnant women have a higher risk of malaria compared to non-pregnant women. This review provides an update on knowledge acquired since 2000 on P. falciparum and P.vivax infections in pregnancy. Maternal risk factors for malaria in pregnancy (MiP) include low maternal age, low parity, and low gestational age. The main effects of MIP include maternal anaemia, low birth weight (LBW), preterm delivery and increased infant and maternal mortality.P. falciparum infected erythrocytes sequester in the placenta by expressing surface antigens, mainly variant surface antigen (VAR2CSA), that bind to specific receptors, mainly chondroitin sulphate A. In stable transmission settings, the higher malaria risk in primigravidae can be explained by the non-recognition of these surface antigens by the immune system. Recently, placental sequestration has been described also for P.vivax infections. The mechanism of preterm delivery and intrauterine growth retardation is not completely understood, but fever (preterm delivery), anaemia, and high cytokines levels have been implicated.Clinical suspicion of MiP should be confirmed by parasitological diagnosis. The sensitivity of microscopy, with placenta histology as the gold standard, is 60% and 45% for peripheral and placental falciparum infections in African women, respectively. Compared to microscopy, RDTs have a lower sensitivity though when the quality of microscopy is low RDTs may be more reliable. Insecticide treated nets (ITN) and intermittent preventive treatment in pregnancy (IPTp) are recommended for the prevention of MiP in stable transmission settings. ITNs have been shown to reduce malaria infection and adverse pregnancy outcomes by 28-47%. Although resistance is a concern, SP has been shown to be equivalent to MQ and AQ for IPTp. For the treatment of uncomplicated malaria during the first trimester, quinine plus clindamycin for 7 days is the first line treatment and artesunate plus clindamycin for 7 days is indicated if this treatment fails; in the 2(nd) and 3(rd) trimester first line treatment is an artemisinin-based combination therapy (ACT) known to be effective in the region or artesunate and clindamycin for 7 days or quinine and clindamycin. For severe malaria, in the second and third trimester parenteral artesunate is preferred over quinine. In the first trimester, both artesunate and quinine (parenteral) may be considered as options. Nevertheless, treatment should not be delayed and should be started immediately with the most readily available drug.

PMID 23350023

2012

Ultrasound evidence of early fetal growth restriction after maternal malaria infection

PLoS One. 2012;7(2):e31411. Epub 2012 Feb 9.

Rijken MJ, Papageorghiou AT, Thiptharakun S, Kiricharoen S, Dwell SL, Wiladphaingern J, Pimanpanarak M, Kennedy SH, Nosten F, McGready R. Source Shoklo Malaria Research Unit, Mae Sot, Tak, Thailand. marcus@shoklo-unit.com Abstract BACKGROUND: Intermittent preventive treatment (IPT), the main strategy to prevent malaria and reduce anaemia and low birthweight, focuses on the second half of pregnancy. However, intrauterine growth restriction may occur earlier in pregnancy. The aim of this study was to measure the effects of malaria in the first half of pregnancy by comparing the fetal biparietal diameter (BPD) of infected and uninfected women whose pregnancies had been accurately dated by crown rump length (CRL) before 14 weeks of gestation. METHODOLOGY/PRINCIPAL FINDINGS: In 3,779 women living on the Thai-Myanmar border who delivered a normal singleton live born baby between 2001-10 and who had gestational age estimated by CRL measurement <14 weeks, the observed and expected BPD z-scores (<24 weeks) in pregnancies that were (n = 336) and were not (n = 3,443) complicated by malaria between the two scans were compared. The mean (standard deviation) fetal BPD z-scores in women with Plasmodium (P) falciparum and/or P.vivax malaria infections were significantly lower than in non-infected pregnancies; -0.57 (1.13) versus -0.10 (1.17), p<0.001. Even a single or an asymptomatic malaria episode resulted in a significantly lower z-score. Fetal female sex (p<0.001) and low body mass index (p = 0.01) were also independently associated with a smaller BPD in multivariate analysis. CONCLUSIONS/SIGNIFICANCE: Despite early treatment in all positive women, one or more (a)symptomatic P.falciparum or P.vivax malaria infections in the first half of pregnancy result in a smaller than expected mid-trimester fetal head diameter. Strategies to prevent malaria in pregnancy should include early pregnancy.

PMID 22347473


Consequences of gestational malaria on birth weight: finding the best timeframe for intermittent preventive treatment administration

PLoS One. 2012;7(4):e35342. Epub 2012 Apr 13.

Huynh BT, Fievet N, Briand V, Borgella S, Massougbodji A, Deloron P, Cot M. Source UMR216, Institut de Recherche pour le Développement, Paris, France. bichtrambe@hotmail.com

Abstract

To investigate the consequences of intermittent preventive treatment (IPTp) timing on birth weight, we pooled data from two studies conducted in Benin between 2005 and 2010: a prospective cohort of 1037 pregnant women and a randomised trial comparing sulfadoxine-pyrimethamine (SP) to mefloquine in 1601 women. A total of 1439 women (752 in the cohort and 687 in the SP arm of the randomised trial) who delivered live singletons were analysed. We showed that an early intake of the first SP dose (4 months of gestation) was associated with a lower risk of LBW compared to a late intake (6-7 months of gestation) (aOR = 0.5 p = 0.01). We also found a borderline increased risk of placental infection when the first SP dose was administered early in pregnancy (aOR = 1.7 p = 0.1). This study is the first to investigate the timing of SP administration during pregnancy. We clearly demonstrated that women who had an early intake of the first SP dose were less at risk of LBW compared to those who had a late intake. Pregnant women should be encouraged to attend antenatal visits early to get their first SP dose and a third dose of SP could be recommended to cover the whole duration of pregnancy and to avoid late infections of the placenta.

PMID 22514730


Effect of malaria on placental volume measured using three-dimensional ultrasound: a pilot study

Malar J. 2012 Jan 5;11:5.

Rijken MJ, Moroski WE, Kiricharoen S, Karunkonkowit N, Stevenson G, Ohuma EO, Noble JA, Kennedy SH, McGready R, Papageorghiou AT, Nosten FH. Source Shoklo Malaria Research Unit, PO Box 46, Mae Sot, Tak 63110, Thailand. marcus@shoklo-unit.com

Abstract

BACKGROUND: The presence of malaria parasites and histopathological changes in the placenta are associated with a reduction in birth weight, principally due to intrauterine growth restriction. The aim of this study was to examine the feasibility of studying early pregnancy placental volumes using three-dimensional (3D) ultrasound in a malaria endemic area, as a small volume in the second trimester may be an indicator of intra-uterine growth restriction and placental insufficiency. METHODS: Placenta volumes were acquired using a portable ultrasound machine and a 3D ultrasound transducer and estimated using the Virtual Organ Computer-aided AnaLysis (VOCAL) image analysis software package. Intra-observer reliability and limits of agreement of the placenta volume measurements were calculated. Polynomial regression models for the mean and standard deviation as a function of gestational age for the placental volumes of uninfected women were created and tested. Based on these equations each measurement was converted into a z -score. The z-scores of the placental volumes of malaria infected and uninfected women were then compared. RESULTS: Eighty-four women (uninfected = 65; infected = 19) with a posterior placenta delivered congenitally normal, live born, single babies. The mean placental volumes in the uninfected women were modeled to fit 5th, 10th, 50th, 90th and 95th centiles for 14-24 weeks' gestation. Most placenta volumes in the infected women were below the 50th centile for gestational age; most of those with Plasmodium falciparum were below the 10th centile. The 95% intra-observer limits of agreement for first and second measurements were ± 37.0 mL and ± 25.4 mL at 30 degrees and 15 degrees rotation respectively. CONCLUSION: The new technique of 3D ultrasound volumetry of the placenta may be useful to improve our understanding of the pathophysiological constraints on foetal growth caused by malaria infection in early pregnancy.

PMID 22222152