Talk:Abnormal Development - Cleft Lip and Palate

From Embryology
Revision as of 15:49, 17 May 2014 by Z8600021 (talk | contribs)
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
About Discussion Pages  
Mark Hill.jpg
On this website the Discussion Tab or "talk pages" for a topic has been used for several purposes:
  1. References - recent and historic that relates to the topic
  2. Additional topic information - currently prepared in draft format
  3. Links - to related webpages
  4. Topic page - an edit history as used on other Wiki sites
  5. Lecture/Practical - student feedback
  6. Student Projects - online project discussions.
Links: Pubmed Most Recent | Reference Tutorial | Journal Searches

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 16) Embryology Abnormal Development - Cleft Lip and Palate. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Talk:Abnormal_Development_-_Cleft_Lip_and_Palate


10 Most Recent

Note - This sub-heading shows an automated computer PubMed search using the listed sub-heading term. References appear in this list based upon the date of the actual page viewing. Therefore the list of references do not reflect any editorial selection of material based on content or relevance. In comparison, references listed on the content page and discussion page (under the publication year sub-headings) do include editorial selection based upon relevance and availability. (More? Pubmed Most Recent)


Cleft Palate

<pubmed limit=5>Cleft+Palate</pubmed>

2014

2010

The origin and early development of the nasal septum in human embryos

Ann Anat. 2010 Apr 20;192(2):82-5. Epub 2010 Jan 25. Steding G, Jian Y. Source Centre of Anatomy, Georg August University Goettingen, Kreuzbergring 36, 37075 Goettingen, Germany.

Abstract

Based on scanning electron microscopic dissections of human embryos and fetuses of the sixth to the twelfth week (Carnegie stages 16-23 and early fetus), the origin of the nasal septum was studied. The findings show that the nasal septum does not grow downwards. It is derived from the tissue between the primary choanae: as such, its anlage is present from the very beginning. Its contact and fusion with the palatal shelves is made possible by the elevation of the palatal shelves from the vertical into the horizontal position, as the tongue descends. Copyright 2010 Elsevier GmbH. All rights reserved.

PMID 20149609


Incidence of cleft Lip and palate in the state of Andhra Pradesh, South India

Indian J Plast Surg. 2010 Jul;43(2):184-9.

Reddy SG, Reddy RR, Bronkhorst EM, Prasad R, Ettema AM, Sailer HF, Bergé SJ.

SourceGSR Institute of Craniofacial Surgery, Hyderabad, Andhra Pradesh, India.

Abstract OBJECTIVE:To assess the incidence of cleft lip and palate defects in the state of Andhra Pradesh, India.DESIGN SETTING:The study was conducted in 2001 in the state of Andhra Pradesh, India. The state has a population of 76 million. Three districts, Cuddapah, Medak and Krishna, were identified for this study owing to their diversity. They were urban, semi-urban and rural, respectively. Literacy rates and consanguinity of the parents was elicited and was compared to national averages to find correlations to cleft births. Type and side of cleft were recorded to compare with other studies around the world and other parts of India.RESULTS:The birth rate of clefts was found to be 1.09 for every 1000 live births. This study found that 65% of the children born with clefts were males. The distribution of the type of cleft showed 33% had CL, 64% had CLP, 2% had CP and 1% had rare craniofacial clefts. Unilateral cleft lips were found in 79% of the patients. Of the unilateral cleft lips 64% were left sided. There was a significant correlation of children with clefts being born to parents who shared a consanguineous relationship and those who were illiterate with the odds ratio between 5.25 and 7.21 for consanguinity and between 1.55 and 5.85 for illiteracy, respectively.CONCLUSION:The birth rate of clefts was found to be comparable with other Asian studies, but lower than found in other studies in Caucasian populations and higher than in African populations. The incidence was found to be similar to other studies done in other parts of India. The distribution over the various types of cleft was comparable to that found in other studies.

PMID 21217978

Epidemiologic factors causing cleft lip and palate and their regularities of occurrence in Estonia

Stomatologija. 2010;12(4):105-108.

Jagomagi T, Soots M, Saag M.

Department of Stomatology, Faculty of Medicine, University of Tartu, Kastani 16, Tartu 50410, Estonia. triin.jagomagi@ortodontia.ee.

Abstract OBJECTIVES. To study epidemiological factors causing development of cleft lip and palate and their occurrence regularities. MATERIALS AND METHODS. This study included 583 cleft lip and palate patients and the information for statistical analyses was gathered from Tartu University Hospital. RESULTS. 19% of the patients had a cleft lip (CL), 39% of the patients had a cleft palate (CP), and 42 % of the patients had a cleft lip and palate (CLP). The ratio for different cleft types CL: CLP: CP was 1:2:2. In unilateral CLP and CL cases, the left side was affected 2.2 times more frequently than the right side. Boys had a CLP nearly 2.1 times more often than girls. CP was more common for girls (60%) than for boys (40%). 30% of children had multiple malformations. 2.6% of children with clefts were born premature, half of which had accompanying developmental anomalies. The average birth weight for cleft child was ~ 3400 grams. 6.8% of children with clefts had a birth weight below 2.5 kg. In case of children with clefts, the mother's age exceeded 30 years in 1/4 of cases and father's age in 1/3 of cases. Both parents were older than 30 years in 66% of the cases. 1/5 of both parents were older than 30 years. 1/3 of mothers of children with clefts had suffered psychological stress, 1/5 of mothers had done hard physical work. 1/5 of mothers had an exposure to teratogenic toxic substances. 15% of them received medications during the first trimester of pregnancy. 15% of mothers had experienced hormonal disorders. CONCLUSIONS. As a result of the study we found a high occurrence rate of CP (CL: CLP: CP - 1:2:2), which is similar to the studies conducted in Finland and Sweden. The reasons for this ratio need further research.

PMID 21266834

A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4

Nat Genet. 2010 Jun;42(6):525-9. Epub 2010 May 2.

Beaty TH, Murray JC, Marazita ML, Munger RG, Ruczinski I, Hetmanski JB, Liang KY, Wu T, Murray T, Fallin MD, Redett RA, Raymond G, Schwender H, Jin SC, Cooper ME, Dunnwald M, Mansilla MA, Leslie E, Bullard S, Lidral AC, Moreno LM, Menezes R, Vieira AR, Petrin A, Wilcox AJ, Lie RT, Jabs EW, Wu-Chou YH, Chen PK, Wang H, Ye X, Huang S, Yeow V, Chong SS, Jee SH, Shi B, Christensen K, Melbye M, Doheny KF, Pugh EW, Ling H, Castilla EE, Czeizel AE, Ma L, Field LL, Brody L, Pangilinan F, Mills JL, Molloy AM, Kirke PN, Scott JM, Arcos-Burgos M, Scott AF.

Johns Hopkins University, School of Public Health, Baltimore, Maryland, USA. tbeaty@jhsph.edu Erratum in:

Nat Genet. 2010 Aug;42(8):727. Scott, James M [corrected to Scott, John M]. Abstract Case-parent trios were used in a genome-wide association study of cleft lip with and without cleft palate. SNPs near two genes not previously associated with cleft lip with and without cleft palate (MAFB, most significant SNP rs13041247, with odds ratio (OR) per minor allele = 0.704, 95% CI 0.635-0.778, P = 1.44 x 10(-11); and ABCA4, most significant SNP rs560426, with OR = 1.432, 95% CI 1.292-1.587, P = 5.01 x 10(-12)) and two previously identified regions (at chromosome 8q24 and IRF6) attained genome-wide significance. Stratifying trios into European and Asian ancestry groups revealed differences in statistical significance, although estimated effect sizes remained similar. Replication studies from several populations showed confirming evidence, with families of European ancestry giving stronger evidence for markers in 8q24, whereas Asian families showed stronger evidence for association with MAFB and ABCA4. Expression studies support a role for MAFB in palatal development.

PMID 20436469