Small supernumerary marker chromosome

From Embryology
Revision as of 20:00, 3 June 2013 by Z8600021 (talk | contribs)

Introduction

Template page (notice removed when completed).


Human Chromosomes: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | X | Y  
Idiogram Chromosome Banding - The term refers to the light and dark pattern, seen after staining with a dye, of individual chromosomes identified in metaphase. It is only in meiosis and mitosis during metaphase that chromosomes can be easily identified, during the normal cell life (interphase) the chromosomes are unravelled and distributed within the nucleus in chromosome territories. A band is that part of a chromosome which is clearly distinguishable from nearby regions by appearing darker or brighter with one or more banding techniques.
Human Idiogram: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | X | Y
Genetic abnormality locations: 1-4 | 5-8 | 9-12 | 13-16 | 17-20 | 21-XY | sSMC
Inheritance Pattern images: Genetic Abnormalities | autosomal dominant | autosomal recessive | X-linked dominant (affected father) | X-Linked dominant (affected mother) | X-Linked recessive (affected father) | X-Linked recessive (carrier mother) | mitochondrial inheritance | Codominant inheritance | Genogram symbols | Genetics
Links: Genetics | Abnormal Development - Genetic

Cite this page: Hill, M.A. (2024, April 19) Embryology Small supernumerary marker chromosome. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Small_supernumerary_marker_chromosome

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G


Some Recent Findings


References

  1. <pubmed></pubmed>


Small supernumerary marker chromosomes and uniparental disomy have a story to tell

J Histochem Cytochem. 2011 Sep;59(9):842-8. doi: 10.1369/0022155411412780. Epub 2011 Jun 14

Liehr T, Ewers E, Hamid AB, Kosyakova N, Voigt M, Weise A, Manvelyan M. Source Jena University Hospital, Institute of Human Genetics, Jena, Germany. i8lith@mti.uni-jena.de

Abstract

Small supernumerary maker chromosomes (sSMC) and uniparental disomy (UPD) are rare, and a combination of both is rarely encountered. Accordingly, only 46 sSMC cases UPD have been reported. Despite of its rareness, UPD has to be considered, especially in prenatal cases with sSMC. Here, the authors reviewed all sSMC cases with UPD (sSMC(U+)) and compared them to sSMC without UPD (sSMC(U-)), which resulted in the following correlations: 1) every sSMC, irrespective of its chromosomal origin, may be principally connected with UPD; 2) mixed hetero- and iso-UPD (hUPD/iUPD) can be observed most often in sSMC(U+) cases followed by complete iUPD, complete hUPD, and segmental iUPD; 3) UPD of chromosomes 6, 7, 14, 15, 16, and 20 is most often reported in sSMC(U+); 4) maternal UPD was approximately nine times more frequent than paternal UPD; 5) if mosaic with a normal cell line, acrocentric-derived sSMC had a three times higher chance of occurrence than the corresponding nonmosaic sSMC cases; 6) UPD in connection with a parentally inherited sSMC is, if existent at all, a rare event; and 7) the gender type and shape of sSMC had no effect on UPD formation. Overall, sSMC(U+) cases may have a story to tell about chromosome number control mechanisms in early embryogenesis.

PMID 21673185


Handling small supernumerary marker chromosomes in prenatal diagnostics

Expert Rev Mol Diagn. 2009 May;9(4):317-24. doi: 10.1586/erm.09.17.

Liehr T, Ewers E, Kosyakova N, Klaschka V, Rietz F, Wagner R, Weise A. Source Jena University Hospital, Institute of Human Genetics and Anthropology, Jena, Germany.

Abstract

Small supernumerary marker chromosomes (sSMCs) are structurally abnormal chromosomes that cannot be thoroughly characterized by conventional banding cytogenetics and are equal in size or smaller than chromosome 20. They are present in 0.075% of prenatal cases and, overall, approximately 3 million people worldwide are carriers of a sSMC. In prenatal cases with ultrasound abnormalities, sSMCs are found in up to approximately 0.2% of the cases. First described in 1961, it is now known that sSMCs have no phenotypic effects in approximately 70% of de novo cases. Nonetheless, in at least 30-50% of prenatally detected sSMC cases, the pregnancy is terminated; that is, for a certain percentage of potentially healthy children with a sSMC, an abortion is induced. This situation can only be improved by providing increased amounts of and more reliable information on sSMCs. This article provides an overview on current state-of-the-art technologies and how sSMC analysis can be optimized in prenatal diagnostics.

PMID 19435454


Frequency of small supernumerary marker chromosomes in prenatal, newborn, developmentally retarded and infertility diagnostics

Int J Mol Med. 2007 May;19(5):719-31. Liehr T, Weise A. Source Institute of Human Genetics and Anthropology, Jena, Germany. i8lith@mti.uni-jena.de

Abstract

In this study the substantial and in part contradictory data available in the literature was collected concerning the frequency of small supernumerary marker chromosomes (sSMC) in the human population in general, and in special subpopulations. One hundred and thirty-two studies on sSMC were reviewed. In summary 1,288,693 cytogenetically studied cases detecting 980 sSMC were compiled. In 132 international surveys there were no ethnic effects detected in the sSMC frequency. sSMC were present in 0.075% of unselected prenatal cases but only in 0.044% of consecutively studied postnatal ones. In infertile subjects, 0.125% were sSMC carriers, distinguishing male from female subjects by a 7.5:1 difference in sSMC frequency for this special group. In developmentally retarded patients the sSMC rate was elevated to 0.288%, similar to prenatal cases with ultrasound abnormalities (0.204%). No increased risk for the presence of sSMC was detected in ICSI-induced pregnancies. Worldwide there are approximately 2.7 x 10(6) living sSMC carriers; 1.8 x 10(6) have a de novo sSMC and approximately 70% of those are clinically normal. Strikingly, 30-50% of pregnancies diagnosed with an sSMC fetus are terminated. This may be connected with the empirical risk that approximately 30% of sSMC carriers manifest clinical abnormalities. Thus, in summary there is a strong need for a better genotype-phenotype correlation enabling better genetic counseling.

PMID 17390076

Small supernumerary marker chromosomes (sSMC) in humans

Cytogenet Genome Res. 2004;107(1-2):55-67.

Liehr T, Claussen U, Starke H. Source Institute of Human Genetics and Anthropology, Jena, Germany. i8lith@mti.uni-jena.de

Abstract

Small supernumerary marker chromosomes (sSMC), defined as additional centric chromosome fragments too small to be identified or characterized unambiguously by banding cytogenetics alone, are present in 0.043% of newborn children. Several attempts have been made to correlate certain sSMC with a specific clinical picture, resulting in the description of several syndromes such as the i(18p)-, der(22)-, i(12p)- (Pallister Killian syndrome) and inv dup(22)- (cat-eye) syndromes. However, most of the remaining sSMC including minute-, ring-, inverted-duplication- as well as complex-rearranged chromosomes, have not yet been correlated with clinical syndromes, mostly due to problems in their comprehensive characterization. Here we present an overview of sSMC, including the first attempt to address problems of nomenclature and their modes of formation, problems connected with mosaicism plus familial occurrence. The review also discusses the frequency of sSMC in prenatal, postnatal, and clinical cases, their chromosomal origin and their association with uniparental disomy. A short review of the up-to-date approaches available for sSMC characterization is included. Clinically relevant correlations concerning the presence of a specific sSMC and its phenotypic consequences should become available soon. Copyright 2004 S. Karger AG, Basel PMID 15305057


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, April 19) Embryology Small supernumerary marker chromosome. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Small_supernumerary_marker_chromosome

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G