Sensory - Taste Development

From Embryology
Revision as of 20:36, 23 September 2010 by S8600021 (talk | contribs)

Introduction

Tongue taste map[1]
Gustatory system neuroanatomy[2]

These notes introduce the development of the sense of taste which can divided into five basic tastes: bitter, salty, sweet, umami (savoury) and sour. Current research appears to have displaced the historic concept of a tongue "map".

A study in rat suggests that neonatal changes in circumvallate papillae may result in postnatal changes in "taste".[3] In frogs, a large taste disc (TD) is the largest vertebrate gustatory organ. Postnatally, the sense of taste is also closely related to the sense of smell.

Taste Links: Introduction | Student project | Tongue Development | Category:Taste
Historic Taste 
Historic Embryology: 1888 human infant papilla foliata | 1889 man taste-organs | Paper - Further observations on the development of the taste-organs of man|1889 further man taste-organs]]
Senses Links: Introduction | placode | Hearing and Balance hearing | balance | vision | smell | taste | touch | Stage 22 | Category:Sensory

| original page

Some Recent Findings

  • [4]"Mammalian taste buds have properties of both epithelial and neuronal cells, and are thus developmentally intriguing. Taste buds differentiate at birth within epithelial appendages, termed taste papillae, which arise at mid-gestation as epithelial thickenings or placodes. ...we demonstrate that Shh-expressing embryonic taste placodes are taste bud progenitors, which give rise to at least two different adult taste cell types, but do not contribute to taste papillae. Strikingly, placodally descendant taste cells disappear early in adult life."

Gustatory cranial sensory neurons

Cranial nerves VII, IX and X have dual embryonic origins and provide both gustatory (taste) and non-gustatory (touch, pain, temperature) sensory innervation to the oral cavity of vertebrates.

Gustatory Neurons

  • originate from epibranchial placodes
  • innervate taste buds
  • project centrally to the rostral nucleus of the solitary tract (NTS)

General Epithelial Innervation of the oral cavity

  • originate from cranial neural crest
  • innervation to the oropharynx
  • project to non-gustatory hindbrain regions (spinal trigeminal nucleus)

(text based on: Embryonic origin of gustatory cranial sensory neurons.[5])

References

  1. <pubmed>17108952</pubmed>
  2. <pubmed>17903280</pubmed>
  3. <pubmed>11474141</pubmed>
  4. <pubmed>19363153</pubmed>
  5. <pubmed>17826760</pubmed>


Reviews

Articles

Search PubMed

Search May 2010

  • Taste System Development - All (320) Review (64) Free Full Text (78)
  • Tongue Development - All (2804) Review (258) Free Full Text (519)

Search Pubmed: Taste System Development | Tongue Development


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 28) Embryology Sensory - Taste Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Sensory_-_Taste_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G