Paper - The subdivisions of the neural folds in man: Difference between revisions

From Embryology
(Created page with "{{Header}} {{Ref-Bartelmez1923}} {{Historic Disclaimer}} {{Footer}} Category:1920'sCategory:Draft")
 
mNo edit summary
Line 3: Line 3:
{{Historic Disclaimer}}
{{Historic Disclaimer}}


=The Subdivisions of the Neural Folds in Man=
G. W. Bartelmez
Department of Anatomy, The University of Chicago, and the Laboratory of Embryology, Carnegie Institution of Washington
Six Figures
Veit and Esch have recently given us the most complete and detailed study of a vertebrate embryo during the period of somite formation that has ever appeared. All the labor and study expended upon it has been Well worth while, as human embryos of this period are very rare. The specimen is certainly normal and the preservation above reproach. The embryo has eight somites and belongs to the beginning of the third Week, a period which Prof. H. M. Evans and I have been studying for some years. Most of Veit and Esch’s findings fit well into the sequence of events as We have interpreted it from our series of embryos. There is, however, a radical disagreement in our interpretations of the nervous system, and in View of the great importance of the Veit embryo to human embryology, it would seem wise to call attention to the matter.
In his first paper based upon this embryo (’18), as well as in the complete description (’22) Veit has adopted a slight modification of the traditional interpretation of the nervous system in young human embryos. This seems to have originated with Kollmann (’89) in his description of the celebrated embryo ‘Bulle,’ which he had studied simply as a whole mount in balsam. The identification of the regions of the brain was, in the nature of the case, almost wholly subjective. The subsequent Writers who have ventured interpretations of the nervous system of embryos younger than ‘Bulle’ have followed Kollmann more or less closely. They have all made the forebrain relatively enormous and the hindbrain insignificant in size. None of these workers





Revision as of 19:34, 7 June 2016

Embryology - 29 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Bartelmez GW. The subdivisions of the neural folds in man. (1923) J. Comp. Neural., 35: 231-247.

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

The Subdivisions of the Neural Folds in Man

G. W. Bartelmez

Department of Anatomy, The University of Chicago, and the Laboratory of Embryology, Carnegie Institution of Washington

Six Figures

Veit and Esch have recently given us the most complete and detailed study of a vertebrate embryo during the period of somite formation that has ever appeared. All the labor and study expended upon it has been Well worth while, as human embryos of this period are very rare. The specimen is certainly normal and the preservation above reproach. The embryo has eight somites and belongs to the beginning of the third Week, a period which Prof. H. M. Evans and I have been studying for some years. Most of Veit and Esch’s findings fit well into the sequence of events as We have interpreted it from our series of embryos. There is, however, a radical disagreement in our interpretations of the nervous system, and in View of the great importance of the Veit embryo to human embryology, it would seem wise to call attention to the matter.


In his first paper based upon this embryo (’18), as well as in the complete description (’22) Veit has adopted a slight modification of the traditional interpretation of the nervous system in young human embryos. This seems to have originated with Kollmann (’89) in his description of the celebrated embryo ‘Bulle,’ which he had studied simply as a whole mount in balsam. The identification of the regions of the brain was, in the nature of the case, almost wholly subjective. The subsequent Writers who have ventured interpretations of the nervous system of embryos younger than ‘Bulle’ have followed Kollmann more or less closely. They have all made the forebrain relatively enormous and the hindbrain insignificant in size. None of these workers




Cite this page: Hill, M.A. (2024, March 29) Embryology Paper - The subdivisions of the neural folds in man. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Paper_-_The_subdivisions_of_the_neural_folds_in_man

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G