Paper - The morphology and development of intestinal folds and villi in vertebrates: Difference between revisions

From Embryology
Line 57: Line 57:


==Character and Occurrence of Fold and Villi==
==Character and Occurrence of Fold and Villi==
Mucosal elevations of the intestines may be considered under four heads: first, such as the typhlosole and spiral valve; second, valvuls conniventes; third, simple more or less longitudinal mucosal folds; fourth, villi.
The first and second divisions hardly come under the scope of this discussion, but will be briefly considered.
It may be said that the typhlosole of lamprey is a simple or partially developed spiral valve. In Elasmobranchs, a high development of this organ is reached; here the spiral valves vary much in complexity, but are traceable directly or indirectly, with the help of embryology, to a simple type such as the typhlosole of lamprey. The Ganoidea apparently have more or less distinct remnants of spiral valves, while this peculiar type of intestinal folds is found to have reached a high development in the Dipnoi and Holocephali as well as the Elasmobranchii.
Ruckert, 96, described the development of the spiral valve of Pris- tiurus from spiral foldings of the mucosa; but it seems to me that the spiral valve is like a folding of the whole thickness of the intestine rather than of the mucosa and submucosa alone, and in the course of time the infoldings may have lost much of the original character of the infolded intestinal wall. I shall not attempt to explain just how or when this infolding took place, but it seems probable that it began before or with the formation of a simple spiral fold like the typhlosole. This infolding may be considered as similar to several coils of intestine which have come into very close contact; no essentially new structure is formed, simply a modified intestinal tube. The folding of the spiral is probably as much for retarding the progress of the food as for increased absorption area, because the absorbing area is not much greater than that of a coiled, small caliber intestinal tract; for where the spiral valve is present, the intestine, although of considerable diameter, is very short. Hence, a very important difference, physiologically, may be noticed between the spiral valve and valvuls conniventes, the first developed especially for retention or retardation of the food and greater compactness, and the second, formed especially for increased absorption area. The important difference already hinted at, is that spiral valves were formed from an infolding to a greater or less extent of the whole muscular walls as well as of the mucosa and submucosa, while valvulze conniventes were formed by a simple fold of the mucosa and submucosa. This theory is partially based upon the following facts.
In the spiral valve of Lepidosteus and Amia, there is more muscular tissue than could have been derived from a double layer of the muscularis mucosae.
There is a spiral fold in the caEcum of rabbits. When rabbits are born, this structure is not fully developed, its presence is marked on the exterior by constrictions, sections across these constrictions show the developing folds on the ental surface and the muscle of the muscular coats can be traced for some distance into the spiral core (Fig. 41). Of course this fold in the rabbit may not be homologous with the spiral valve of other forms, and the hypothesis outlined aboye requires much further investigation before it can be substantiated.




{{Footer}}
{{Footer}}

Revision as of 12:59, 17 November 2018

Embryology - 29 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Hilton WA. The morphology and development of intestinal folds and villi in vertebrates. (1902) Amer. J. Anat. 1: 459-504.

Online Editor  
Mark Hill.jpg
This historic 1902 paper by Hilton describes the development of intestinal folds and villi in vertebrates.



Modern Notes: intestine

GIT Links: Introduction | Medicine Lecture | Science Lecture | endoderm | mouth | oesophagus | stomach | liver | gallbladder | Pancreas | intestine | mesentery | tongue | taste | enteric nervous system | Stage 13 | Stage 22 | gastrointestinal abnormalities | Movies | Postnatal | milk | tooth | salivary gland | BGD Lecture | BGD Practical | GIT Terms | Category:Gastrointestinal Tract
GIT Histology Links: Upper GIT | Salivary Gland | Smooth Muscle Histology | Liver | Gallbladder | Pancreas | Colon | Histology Stains | Histology | GIT Development
Historic Embryology - Gastrointestinal Tract  
1878 Alimentary Canal | 1882 The Organs of the Inner Germ-Layer The Alimentary Tube with its Appended Organs | 1884 Great omentum and transverse mesocolon | 1902 Meckel's diverticulum | 1902 The Organs of Digestion | 1903 Submaxillary Gland | 1906 Liver | 1907 Development of the Digestive System | 1907 Atlas | 1907 23 Somite Embryo | 1908 Liver | 1908 Liver and Vascular | 1910 Mucous membrane Oesophagus to Small Intestine | 1910 Large intestine and Vermiform process | 1911-13 Intestine and Peritoneum - Part 1 | Part 2 | Part 3 | Part 5 | Part 6 | 1912 Digestive Tract | 1912 Stomach | 1914 Digestive Tract | 1914 Intestines | 1914 Rectum | 1915 Pharynx | 1915 Intestinal Rotation | 1917 Entodermal Canal | 1918 Anatomy | 1921 Alimentary Tube | 1932 Gall Bladder | 1939 Alimentary Canal Looping | 1940 Duodenum anomalies | 2008 Liver | 2016 GIT Notes | Historic Disclaimer
Human Embryo: 1908 13-14 Somite Embryo | 1921 Liver Suspensory Ligament | 1926 22 Somite Embryo | 1907 23 Somite Embryo | 1937 25 Somite Embryo | 1914 27 Somite Embryo | 1914 Week 7 Embryo
Animal Development: 1913 Chicken | 1951 Frog
Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

The Morphology and Development of Intestinal Folds and Villi in Vertebrates

By

William A. Hilton,

From the Laboratory of Hktology and Embryology, Cornell University. with 2 tables and 87 fiqure

(1902)

Draft page only

  • This paper was presented to the faculty of Cornell University as a thesis for the degree of Doctor of Philosophy, May 1908. I wish to express my grateful apprecia- tion of the facilities placed a6 my disposal by the Department of Histology and Embryology, and for the aid and encouragement of the instructing staff. I am also greatly indebted to Prof. B. 0.Wilder of the Department of Vertebrate Zoology, who very kindly enabled me to .examine many valuable specimens which are in the possession of that Department.

Introduction

For many years confused ideas have been prevalent concerning the form and occurrence of mucosal folds and villi in the different divisions of vertebrates, and even yet it is not entirely clear just where folds cease and villi begin. There are great variations in occurrence even in closely related forms, but much of this confusion may be due to the various methods of study which have been employed. Compara- tively few investigators have made an extended study of the folds and villi in the different classes, although quite a number have made careful investigations of a single vertebrate class, and much work has been done upon the folds and TIilli of different species when the general digestive system of a typical form was described.


The phylogenetic study of an organ often reveals many perplexing structures which may render conclusions very doubtful. In such a study of folds and villi, difficulties present themselves which are almost insurmountable without the aid of embryology. So in order to obtain a correct idea of the primitive as well as the more advanced forms of mucosal elevations, it is necessary not only to make rather extended observations of numerous species of all great groups, but also to trace the development in several types of vertebrate embryos. The possibili- ties for work along these lines are very great, and in this investigation, only so far as time and material would allow, such work was attempted. An effort was made to determine as clearly as possible the limits of folds and villi; to describe the character of folds and villi in some forms not already dexribed as well as to supplement what was known about others; to determine, as far as possible, the form of folds and villi characteristic of different groups of vertebrates; to throw some light upon the development af villi in different forms-first, by the general survey of conditions existing in adult species; second, by em- bryological study of a few types.


Methods

In order to obtain folds and villi in their usual form, fixation must be used which will not cause the muscular fibers of the muscularis mucosle to contract and so produce unusual shapes. The intestines were usually injected and placed in the hardening fluids before the tissues had ceased to be irritable, so almost any of the fixing fluids which are rapid in their action were not desirable. Although formalin acts quickly, it was found to be very satisfactory, as the villi appeal only slightly distorted, but it was not so useful when the finer structural elements were to be preserved. Miiller’s fluid, or a solution of 3 per cent dichromate of potash, does very well for preserving villi, in that the action of these fluids is slow and villi are seldom contracted; but when these fluids are empicyed, the epithelium is usually exfoliated. At times a rather high percentage of alcohol was efficient as a preserva- tive, as the action was not rapid.


After hardening the inteztines either in the fixing fluid or in alcohol, rather thick sections were cut in collodion; the thickness of the sec- tions depending upon the size of the villi to be examined. Examina- tions of the whole intestine under liquids often helped to determine the character of folds or villi. When the muscular coats were thin enough, bits of intestine were stained with hydrochloric acid carmine, and mounted mucosa up. When this was not possible, villi were exam- ined which had been isolated by scraping or cutting from the mucosa.

For counting and measuring folds and villi, various methods were used. The most satisfactory, but not always applicable, method was by means of an ocular micrometer in squares. When villi were very numerous and the walls of the intestine thick, they were counted by removing a measured bit of mucous membrane and isolating the villi from it, counting their tips or bases until by repeated trials, uniform results were obtained. In every case the intestines were studied by as many different methods as possible and the results compared.

The following is a list of the methods ordinarily used for each specimen:

  1. Fixation by two or more methods.
  2. Naked eye examination, with isolation of villi to be studied under a lens or microscope.
  3. Cutting free-hand sections if possible.
  4. Mounting mucosa up after staining, if the muscular walls were thin enough.
  5. Cutting serial sections from tissues imbedded in paraffine or collodion.

For the work on embryological development of folds and villi the usual fixing and staining fluids were employed.


Character and Occurrence of Fold and Villi

Mucosal elevations of the intestines may be considered under four heads: first, such as the typhlosole and spiral valve; second, valvuls conniventes; third, simple more or less longitudinal mucosal folds; fourth, villi.


The first and second divisions hardly come under the scope of this discussion, but will be briefly considered.


It may be said that the typhlosole of lamprey is a simple or partially developed spiral valve. In Elasmobranchs, a high development of this organ is reached; here the spiral valves vary much in complexity, but are traceable directly or indirectly, with the help of embryology, to a simple type such as the typhlosole of lamprey. The Ganoidea apparently have more or less distinct remnants of spiral valves, while this peculiar type of intestinal folds is found to have reached a high development in the Dipnoi and Holocephali as well as the Elasmobranchii.


Ruckert, 96, described the development of the spiral valve of Pris- tiurus from spiral foldings of the mucosa; but it seems to me that the spiral valve is like a folding of the whole thickness of the intestine rather than of the mucosa and submucosa alone, and in the course of time the infoldings may have lost much of the original character of the infolded intestinal wall. I shall not attempt to explain just how or when this infolding took place, but it seems probable that it began before or with the formation of a simple spiral fold like the typhlosole. This infolding may be considered as similar to several coils of intestine which have come into very close contact; no essentially new structure is formed, simply a modified intestinal tube. The folding of the spiral is probably as much for retarding the progress of the food as for increased absorption area, because the absorbing area is not much greater than that of a coiled, small caliber intestinal tract; for where the spiral valve is present, the intestine, although of considerable diameter, is very short. Hence, a very important difference, physiologically, may be noticed between the spiral valve and valvuls conniventes, the first developed especially for retention or retardation of the food and greater compactness, and the second, formed especially for increased absorption area. The important difference already hinted at, is that spiral valves were formed from an infolding to a greater or less extent of the whole muscular walls as well as of the mucosa and submucosa, while valvulze conniventes were formed by a simple fold of the mucosa and submucosa. This theory is partially based upon the following facts.

In the spiral valve of Lepidosteus and Amia, there is more muscular tissue than could have been derived from a double layer of the muscularis mucosae.


There is a spiral fold in the caEcum of rabbits. When rabbits are born, this structure is not fully developed, its presence is marked on the exterior by constrictions, sections across these constrictions show the developing folds on the ental surface and the muscle of the muscular coats can be traced for some distance into the spiral core (Fig. 41). Of course this fold in the rabbit may not be homologous with the spiral valve of other forms, and the hypothesis outlined aboye requires much further investigation before it can be substantiated.



Cite this page: Hill, M.A. (2024, March 29) Embryology Paper - The morphology and development of intestinal folds and villi in vertebrates. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Paper_-_The_morphology_and_development_of_intestinal_folds_and_villi_in_vertebrates

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G