Paper - The histological appearances of the mammalian pituitary body: Difference between revisions

From Embryology
(Created page with "{{Header}} {{Ref-Herring1908a}} {{Historic Disclaimer}} =The Histological Appearances of the Mammalian Pituitary Body= By P. T. Herring. From the Physiology Department, Uni...")
 
Line 30: Line 30:


In 1886 Marie drew attention to a relationship between changes in the pituitary and the disease acromegaly or gigantism. Clinical and
In 1886 Marie drew attention to a relationship between changes in the pituitary and the disease acromegaly or gigantism. Clinical and
pathological experiences have led to the theory which assigns to the pituitary the role of regulating the normal development of the body, more especially of the extremities and bones. The nature of the change that the pituitary undergoes in acromegaly is uncertain, and before any light can be thrown upon its pathology it is necessary that the significance of the various histological elements that constitute the normal pituitary should
pathological experiences have led to the theory which assigns to the pituitary the role of regulating the normal development of the body, more especially of the extremities and bones. The nature of the change that the pituitary undergoes in acromegaly is uncertain, and before any light can be thrown upon its pathology it is necessary that the significance of the various histological elements that constitute the normal pituitary should be understood. Moreover, it appears that acromegaly may occur without
any apparent change in the pituitary, and that tumours of the pituitary
are not always attended by acromegaly. A feature as constant as acromegaly in affections of the pituitary is the occurrence of polyuria with
or without sugar in the urine (Hansemann (16), Sternberg (41)).


Oliver and Schafer (28) in 1895 described the presence of a substance
in saline extracts of the pituitary, which, when injected intravenously,
produces a rise of blood-pressure. Howell (18) showed that this substance is only present in the posterior lobe. Magnus and Schafer (24)
in 1901 noticed that intravenous injection of saline extract of the
posterior lobe is followed by a marked increase of urine flow. Schafer
and Herring (37) confirmed this observation, and showed the striking
parallelism which exists between the suprarenal capsules and the pituitary
in development, structure, and functions. In each there are two parts, one
of which, a highly vascular epithelium, yields no active extract, while the
other, of neuro—ectodermic origin, gives an extract which has a remarkable
physiological effect upon the heart and arteries. The view was conjectured
that in the epithelial part of each organ the material which is to furnish
the active agent of the secretion passes through certain stages of formation,
and that its production is merely completed in the neuro—ectodermic part,
in which part alone the full activity of the secretion is acquired. That
the posterior lobe of the pituitary should furnish an active secretion is
difficult to reconcile with the usual views held on its structure. The older
anatomists, W. Muller (27), Schwalbe (40), and Toldt (45), looked upon
it as a mass of connective tissue cells and fibres which during development
have destroyed all trace of the original nerve tissue. Berkley (2), on the
other hand, describes in it a complex arrangement of nerve cells and nerve
fibres, besides neuroglia and ependyma cells. Kolliker (19) takes up an
intermediate position, and believes that there are no true nerve cells, but
neuroglia and ependyma, a view similar to the one held by Virchow.
Peremeschko (30) first recognised that the posterior lobe has an epithelial
investment. Osborne and Swale Vincent (29) state that extracts of
the central part of the posterior lobe are more active than extracts of
the margin of the lobe, and believe that the epithelial investment would
be found to be inactive if it could be properly isolated.
The pituitary body is found in all vertebrates, and, although differing
widely in structure and in the arrangement of its component parts, possesses
many features common to all. In fishes, the posterior lobe has a complex
vascular structure of a glandular nature, which was called the “saccus
vasculosus” by Gottsche (12). L. Stieda (44) proved that the saccns
vasculosus communicates with the brain cavity, and Rabl-Riickhard (31)
named it an infundibular gland. Their researches have been confirmed
by Kupffer (21). The function of the saccus vasculosus is unknown, but
its secretion, if it is a secretory gland, apparently mixes with the fluid
contents of the ventricles of the brain. According to Kupffer, the posterior lobe of the mammalian pituitary in its early development
retains for a time a glandular structure. In the adult mammal the
epithelial investment of the posterior lobe is regarded by Ktilliker as
the representative of an infundibular gland. B. Haller (14«) states that
in mammals—as a type of which he takes the mouse——and in all other
classes of vertebrates the anterior lobe of the pituitary and epithelial
investment of the posterior lobe form a gland, the tubules of which open
by a small median and ventral mouth into the space between the pia and
dura mater. Haller believes that the pituitary in all vertebrates secretes
directly into the subdural space. Edinger (9) denies that this is true
of the human pituitary, Salzer (36) could find no opening in the pituitary
of the rat and mouse, and Sterzi (42) found none in the pituitary of
Petromyzon.
There are other views on the structure and functions of the pituitary
body. Boeke (3) and Gemelli (11) describe appearances in the posterior
lobe of fishes which they regard as indicative of sense organs. Cyon (6)
looks upon it as an organ which regulates the amount of blood passing
to the brain. Guerrini (13) and others believe that the pituitary
produces a secretion which has a vague antitoxic action.
Our knowledge of the structure of the pituitary body is, therefore,
far from exact, and is inadequate to account for the physiological effects
which follow intravenous injection of extracts, especially of the posterior
lobe. Even the important question as to whether the glandular portion
secretes directly into the subdural space is still unsettled. The work, the
results of which are given in this paper, was begun with the intention of
investigating the physiological histology of the posterior lobe, but the two
portions of the pituitary were found to be so closely associated that no
part would be complete without careful consideration of the other. The
development and comparative anatomy of the pituitary body have been
examined, but are only touched upon in this paper where reference to them
throws light upon the particular point considered.
==Material and Methods Employed==
The cat furnishes some of the best material for the study of the pituitary
body, for in this animal the posterior lobe retains throughout life its
original cavity in free communication with the third ventricle of the brain.
The structure of the posterior lobe in the cat is thus rendered simpler
because the arrangement of the cells which line the cavity persists in the
adult in much the same manner as obtains in the developing organ. The
parts which are derived from the buccal mucous membrane form an almost
complete investment for the nervous portion, and the original lumen of
the epithelial pouch also persists throughout life in the form of a well
marked cleft. The so-called colloid cysts are also prominent features in
the pituitary of the cat.





Revision as of 10:08, 15 November 2016

Embryology - 28 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Herring PT. The histological appearances of the mammalian pituitary body. (1908) Quar. Jour. Ex. Physiol. 1: 121-159.

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

The Histological Appearances of the Mammalian Pituitary Body

By P. T. Herring.

From the Physiology Department, University of Edinburgh.

Received for publication 11th February 1908.

Introduction

The structure and significance of the pituitary body have long been objects of much speculation. Erroneous conceptions of its structure are responsible for some of the many theories which have been advanced with regard to its functions. The pituitary, indeed, derives its name from the old idea that it was a gland which discharges a secretion—pituita—into the nostrils.


Rathke (32) discovered the double origin of the pituitary, and on developmental grounds classed it among glands. Other observers looked upon it as part of the brain. Luschka (23) called it a “nerve-gland” in which the two parts are separated from one another by pia mater. Ecker (8), on the other hand, held the view that both portions of the pituitary combine to form a unit of the nature of a “ blood-vessel gland.”


Burdach (4.-), Luschka (23), and Virchow (46) regarded the posterior lobe as the anterior terminal end of the cerebro-spinal canal, a “filum terminale anterius,” resembling in structure the filum terminale of the spinal cord. Virchow also compared the anterior lobe to the thyroid gland, and described in it vesicles containing colloid material which show a striking resemblance to the follicles of the thyroid. Rogowitsch (34), H. Stieda (43), Schonemann (39), and others have attached great importance to this resemblance, and ascribe similar functions to the two glands. Removal of the thyroid is, according to their observations, followed by a compensatory hypertrophy of certain parts of the glandular lobe of the pituitary.


In 1886 Marie drew attention to a relationship between changes in the pituitary and the disease acromegaly or gigantism. Clinical and pathological experiences have led to the theory which assigns to the pituitary the role of regulating the normal development of the body, more especially of the extremities and bones. The nature of the change that the pituitary undergoes in acromegaly is uncertain, and before any light can be thrown upon its pathology it is necessary that the significance of the various histological elements that constitute the normal pituitary should be understood. Moreover, it appears that acromegaly may occur without any apparent change in the pituitary, and that tumours of the pituitary are not always attended by acromegaly. A feature as constant as acromegaly in affections of the pituitary is the occurrence of polyuria with or without sugar in the urine (Hansemann (16), Sternberg (41)).


Oliver and Schafer (28) in 1895 described the presence of a substance in saline extracts of the pituitary, which, when injected intravenously, produces a rise of blood-pressure. Howell (18) showed that this substance is only present in the posterior lobe. Magnus and Schafer (24) in 1901 noticed that intravenous injection of saline extract of the posterior lobe is followed by a marked increase of urine flow. Schafer and Herring (37) confirmed this observation, and showed the striking parallelism which exists between the suprarenal capsules and the pituitary in development, structure, and functions. In each there are two parts, one of which, a highly vascular epithelium, yields no active extract, while the other, of neuro—ectodermic origin, gives an extract which has a remarkable physiological effect upon the heart and arteries. The view was conjectured that in the epithelial part of each organ the material which is to furnish the active agent of the secretion passes through certain stages of formation, and that its production is merely completed in the neuro—ectodermic part, in which part alone the full activity of the secretion is acquired. That the posterior lobe of the pituitary should furnish an active secretion is difficult to reconcile with the usual views held on its structure. The older anatomists, W. Muller (27), Schwalbe (40), and Toldt (45), looked upon it as a mass of connective tissue cells and fibres which during development have destroyed all trace of the original nerve tissue. Berkley (2), on the other hand, describes in it a complex arrangement of nerve cells and nerve fibres, besides neuroglia and ependyma cells. Kolliker (19) takes up an intermediate position, and believes that there are no true nerve cells, but neuroglia and ependyma, a view similar to the one held by Virchow. Peremeschko (30) first recognised that the posterior lobe has an epithelial investment. Osborne and Swale Vincent (29) state that extracts of the central part of the posterior lobe are more active than extracts of the margin of the lobe, and believe that the epithelial investment would be found to be inactive if it could be properly isolated.


The pituitary body is found in all vertebrates, and, although differing widely in structure and in the arrangement of its component parts, possesses many features common to all. In fishes, the posterior lobe has a complex vascular structure of a glandular nature, which was called the “saccus vasculosus” by Gottsche (12). L. Stieda (44) proved that the saccns vasculosus communicates with the brain cavity, and Rabl-Riickhard (31) named it an infundibular gland. Their researches have been confirmed by Kupffer (21). The function of the saccus vasculosus is unknown, but its secretion, if it is a secretory gland, apparently mixes with the fluid contents of the ventricles of the brain. According to Kupffer, the posterior lobe of the mammalian pituitary in its early development retains for a time a glandular structure. In the adult mammal the epithelial investment of the posterior lobe is regarded by Ktilliker as the representative of an infundibular gland. B. Haller (14«) states that in mammals—as a type of which he takes the mouse——and in all other classes of vertebrates the anterior lobe of the pituitary and epithelial investment of the posterior lobe form a gland, the tubules of which open by a small median and ventral mouth into the space between the pia and dura mater. Haller believes that the pituitary in all vertebrates secretes directly into the subdural space. Edinger (9) denies that this is true of the human pituitary, Salzer (36) could find no opening in the pituitary of the rat and mouse, and Sterzi (42) found none in the pituitary of Petromyzon.

There are other views on the structure and functions of the pituitary body. Boeke (3) and Gemelli (11) describe appearances in the posterior lobe of fishes which they regard as indicative of sense organs. Cyon (6) looks upon it as an organ which regulates the amount of blood passing to the brain. Guerrini (13) and others believe that the pituitary produces a secretion which has a vague antitoxic action.

Our knowledge of the structure of the pituitary body is, therefore, far from exact, and is inadequate to account for the physiological effects which follow intravenous injection of extracts, especially of the posterior lobe. Even the important question as to whether the glandular portion secretes directly into the subdural space is still unsettled. The work, the results of which are given in this paper, was begun with the intention of investigating the physiological histology of the posterior lobe, but the two portions of the pituitary were found to be so closely associated that no part would be complete without careful consideration of the other. The development and comparative anatomy of the pituitary body have been examined, but are only touched upon in this paper where reference to them throws light upon the particular point considered.

Material and Methods Employed

The cat furnishes some of the best material for the study of the pituitary body, for in this animal the posterior lobe retains throughout life its original cavity in free communication with the third ventricle of the brain. The structure of the posterior lobe in the cat is thus rendered simpler because the arrangement of the cells which line the cavity persists in the adult in much the same manner as obtains in the developing organ. The parts which are derived from the buccal mucous membrane form an almost complete investment for the nervous portion, and the original lumen of the epithelial pouch also persists throughout life in the form of a well marked cleft. The so-called colloid cysts are also prominent features in the pituitary of the cat.


{{Footer}