Paper - Studies on the human corpus luteum 2: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 25: Line 25:


{{#pmid:5768871}}
{{#pmid:5768871}}
==Introduction==
In contrast to our preceding paper on the development and regression of luteal cells in the transitory corpus luteum of the menstrual cycle (1), this study examines these same steroidogenic cells after they have become established as the corpus luteum of pregnancy. Within a few weeks (not precisely determined) after the implantation of the fertilized ovum, the corpus luteum is no longer essential to the maintenance of pregnancy. Nevertheless the present ultrastructural study of the relationship of organelles in luteal cells from the sixth through the 35th week of pregnancy indicates that massive regression in this tissue in the later months of pregnancy does not take place. Green et al. (7) likewise concluded in their electron microscopic study that luteal cells from term pregnancies could be capable of secretion. In a study of the incorporation of acetate—l—“C into progesterone in corpora lutea from the luteal phase of the cycle and from the eighth and 40th weeks of pregnancy, Savard et al. (16) reported high rates of incorporation in specimens from pregnant patients and in those from patients at days 15-21 of the menstrual cycle. They further reported that the specimens from pregnant patients form less progesterone in vitro in terms of micrograms of steroid than do cyclic corpora lutea. They conclude that the corpus luteum undergoes profound metabolic changes throughout its lifespan.
==Materials and Methods==
Five corpora lutea from human pregnancies have been studied (Table I) by the same methods of TABLEI Clinical Age of the Fine Human Corpora Luisa of Pregnancy Used in This Study Case no. Stage of Pregnancy in weeks H51 6 H49 10 H42 16 HB 16 H43 35 (Caesarean section) preparations reported in the preceding paper on cyclic human luteal cells (1).





Revision as of 11:28, 4 October 2018

Embryology - 24 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Adams EC. and Hertig AT. Studies on the human corpus luteum 2. (1969) J Cell Biol. 41(3):716-35. PMID 5768871

Online Editor 
Mark Hill.jpg
This historic 1969 paper is the second in a series describing the ultrastructure of the corpus luteum.


human corpus luteum 1 | human corpus luteum 2

Moden Notes: ovary | menstrual cycle


Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Studies on the human corpus luteum

II. Observations on the ultrastructure of luteal cells during pregnancy

Adams EC, Hertig AT.

Abstract

The ultrastructure of human corpora lutea obtained during the 6th, 10th, 16th, and 35th week of pregnancy is reported. Differences between the established luteal cell of pregnancy and the transitory luteal cell of the menstrual cycle are noted. In pregnancy the luteal cell is more compartmentalized into a peripheral mass of ER (endoplasmic reticulum) and a central area where mitochondria and Golgi complexes are concentrated. The latter area extends to a cell surface where microvilli face on a perivascular space. Long bundles of filaments are prominent within the luteal cell cytoplasm and, in contiguous cells, appear to arise from adjacent desmosomal regions. Bilateral subsurface cisternae of granular ER at lateral cell borders appear to be areas of specialized junctional surfaces. Certain luteal cells with irregular nuclear membranes are also characterized by vesicular aggregates enclosed within a single membrane. These aggregates are found within the peripheral nucleoplasm or the perinuclear cytoplasm. Their single limiting membrane often appears continuous with either the inner or outer leaflet of the nuclear membrane.

Adams EC & Hertig AT. (1969). Studies on the human corpus luteum. II. Observations on the ultrastructure of luteal cells during pregnancy. J. Cell Biol. , 41, 716-35. PMID: 5768871

Introduction

In contrast to our preceding paper on the development and regression of luteal cells in the transitory corpus luteum of the menstrual cycle (1), this study examines these same steroidogenic cells after they have become established as the corpus luteum of pregnancy. Within a few weeks (not precisely determined) after the implantation of the fertilized ovum, the corpus luteum is no longer essential to the maintenance of pregnancy. Nevertheless the present ultrastructural study of the relationship of organelles in luteal cells from the sixth through the 35th week of pregnancy indicates that massive regression in this tissue in the later months of pregnancy does not take place. Green et al. (7) likewise concluded in their electron microscopic study that luteal cells from term pregnancies could be capable of secretion. In a study of the incorporation of acetate—l—“C into progesterone in corpora lutea from the luteal phase of the cycle and from the eighth and 40th weeks of pregnancy, Savard et al. (16) reported high rates of incorporation in specimens from pregnant patients and in those from patients at days 15-21 of the menstrual cycle. They further reported that the specimens from pregnant patients form less progesterone in vitro in terms of micrograms of steroid than do cyclic corpora lutea. They conclude that the corpus luteum undergoes profound metabolic changes throughout its lifespan.

Materials and Methods

Five corpora lutea from human pregnancies have been studied (Table I) by the same methods of TABLEI Clinical Age of the Fine Human Corpora Luisa of Pregnancy Used in This Study Case no. Stage of Pregnancy in weeks H51 6 H49 10 H42 16 HB 16 H43 35 (Caesarean section) preparations reported in the preceding paper on cyclic human luteal cells (1).


Copyright

Rockefeller University Press - Copyright Policy This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.jcb.org/misc/terms.shtml). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/ ). (More? Help:Copyright Tutorial)


Cite this page: Hill, M.A. (2024, April 24) Embryology Paper - Studies on the human corpus luteum 2. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Paper_-_Studies_on_the_human_corpus_luteum_2

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G