Paper - How Large is the Mammalian Egg?: Difference between revisions

From Embryology
(Created page with " {{Header}} {{Ref-Hartman1929}} {| class="wikitable mw-collapsible mw-collapsed" ! Online Editor  |- | 90px|left This historic 1929 paper by Hartma...")
 
mNo edit summary
Line 16: Line 16:
|}
|}
{{Historic Disclaimer}}
{{Historic Disclaimer}}
=How Large is the Mammalian Egg? A Review=
By Carl G. Hartman
Department of Embryology, Carnegie Institution of Washington, Betltimare, Mn.
If one sketch the outline of a hen's
egg so as to fill a page of this Journal
as nearly as possible, the egg of the
oviparous Australian mammal Ornitiiorbynclnm, drawn to the same scale, would
be represented by the natural size of the
hen's egg, the entire opossum egg with
its albumen, by a cross-section of the lead
in a pencil, the human egg by a period in
average sized type.
Within the phylum Vertebrate; the differences between the smallest eggs, those of
mammals, and the largest is even greater.
Thus the eggs of certain “man-eating"
sharks (Lamnids) are as much as 2.2.0 mm.
in diameter. The egg shell of the now
exterminated Apyorni: measured 350 mm.
or over a foot in its longest diameter. The
ostrich egg is -150 mm. in length and has a
capacity of 1.2 liters, or over aquart.
In the evolution of mammals, the
Monotremes (Omitlaorbyncbn: and Ecbidnn)
form an interesting link, for they possess
in their hairy covering and milk secreting
glands the chief distinguishing class characteristics of mammals. Yet they “lay"
large yolk-laden eggs from which the
young emerge after a short incubation
outside the female's body. From the
15-millimeter egg of Ornitborlqynclms and
the 15-millimeter egg of Ecbidnet there is a
sudden drop to the typical mammalian
egg, which measures about one-tenth of a
millimeter. It is true that the marsupial
eggs show some transitional characters, as for example, the large albumen layer,
the shell membrane, and a somewhat
richer supply of yolk, as in Dnsyuru:
(Hill). But throughout the Eat/aeriez, the
mammals above the marsupials, the egg is
very uniform, with not much over a twoto-one variation in size (table 8), which
holds from rat to man, from bat to horse,
from mouse to elephant and whale. The
size of the animal bears no relation to -the
size of the egg.
The comparison between the large yolkladen eggs on the one hand and the human
egg or the eggs of most mammals on the
other is not fair to the latter group, for
these represent only the yolk or "vitellus"
of larger eggs. The total diameter of the
hen's egg, for example, is due largely to
the albumen laid down in the oviduct
around the vitellus. The human egg has
no such envelope, and this is true of all
mammals with the exception of the
marsupials and the Lagomorpha (hares
and rabbits). Thus the egg of our only
marsupial, the opossum, has a thick albumen layer enclosed in a thin shell membrane; the rabbit egg lacks the shell membrane, while all other mammalian eggs
have only a highly transparent limiting
membrane, or “zona pellucida," which
they receive in the ovary before their discharge into the oviduct. The opossum
egg, with its opaque white ovum proper
in the center of a transparent, hardly
visible albumen sphere, looks, in reflected light, much like a grain of sago not quite
cooked through—a hyaline sphere with a
white spherule in the center.
This comparison between the egg of
fowl and that of mammals must be controlled in another way. The yolk or
vitellus of the hen's egg is so laden with
fat and protein pabulum for the developing
embryo that the egg nucleus, with its
associated tiny mass of protoplasm, which
alone will make the chick embryo, becomes all but lost on the surface of the
yolk. But that speck of protoplasm corresponds to the entire Eutherian egg. The
reduction in size has, of course, been
made possible by the parasitic habit assumed by the mammalian fetus through
implantation in the maternal tissues.
In order to visualize for himself the
actual size of the mammalian egg, the
reader may follow the suggestion which
the Berlin anatomist Waldeyer was wont
to give his students. Spread out, said he,
a sample of sand on a sheet of paper, brush
off the easily visible grains and pick out
the smallest grain, which it is just possible
to see with the naked eye—that speck is
of the order of magnitude of the mammalian egg.
THE DISCOVERY OF THE MAMMALIAN EGG
In view of the small size of the mammalian egg, it is not at all surprising that
it so long escaped detection. It was not
until 182.7 that von Baer announced the
discovery of the real mammalian and
human eggs. From the time of de Graaf
(1673) to that of von Baer the large
vesicular follicle of the ovary was regarded as the egg. We now know that
the ovarian follicles that bear de Graaf’s
name do not constitute the egg but contain
the egg. The clear, limpid “graafian”
follicles in the ovary of the rabbit, before
their dehiscence, do greatly resemble eggs
of about eight days’ development, but how such large eggs were to pass through
the narrow lumen of the oviduct did not,
it seems, concern many investigators. I
read, however, in Ritchie's interesting
book, Contribution; to Assist the Study of
Ovarian Physiology and Pathology (1865)
that Morgagni, in his Aoloermria Anatomim Omnia (1741) made the following
reflections: “How much more likely is
the conjecture that they (the ovarian
follicles) are glands secreting fluid for the
purpose of keeping the ovum safe, and
helping it to escape when the proper
time arrives." The error referred to
above was a costly one and doubtless
retarded progress in the study of embryology during the century preceding von
Baer. It is interesting to note that Jones
(1837) varied the error of deGraaf by
confusing the gelatinous envelope of the
rabbit egg with the liquor folliculi.
However, the century following the
“Father of Embryology,” the nineteenth,
did not produce a large array of investigators who occupied themselves with the
study of the early stages of the mammalian
egg. Without a doubt the outstanding
figure was Bischoff, who published, in
the forties and following decades, his
classical studies on the rabbit, the dog,
the guinea-pig, and other domestic
animals, as also the deer. These studies
have stood the test of time; Bischoff's
measurements on the living eggs were the
most extensive up to a very recent date.
My calculations of Bischoff’s data are uniformly
too high. I have followed Keibel’s equivalent of 3
Prussian Inches (R2,) the equal of 80 mm. This
approximates our equivalent of 2.5 mm. for one inch.
Thus the average given for the dog egg (1845, page 7)
is o.oo68 to o.oo7o P.Z. or 1/13 to 1/12. P.L. or 16 to
19/ I00 mm. These dimensions in Iuicra, according to
my calculations would be: 181 to 186, 170 to 184,
166 to 190. It seems that Bischoff attempted exact’ness only in terms of decimal fractions of the P.Z.
(preussischer Zoll.). Since his measurements run
pretty uniform though high it is probable that the unit of measurement he used was smaller than he
thought by a small fraction.
Sobotta (1895) studied 1459 mouse eggs
in maturation and early cleavage, and
Long and Mark (1911) I000 mouse eggs in
maturation and fertilization. These constitute the most extensive studies of a
single species and on a limited phase of
development, but they do not include a
single measurement on the living egg.
As will be pointed out herein, it is the
living egg alone that affords the true
TABLE I
Frem Long and Marie (1911), rbowing change: in size of
tin: mam: egg during maturation and fertilization,
bared on egg: fixed in Jim
AVERmm— D‘;;’:_
STAGE BEEéIG0sF BER
mom
Ovarian:
Germinal vesicle . . . . . . . . . . . . . . . . . . 109 65 5
Beginning of first maturation division . . . . . . . . . . . . . . . . . . . . . . . . . . 53 62.5
first maturation division . . . . . . . . . . . 7.11 58.0
Tubal.Second spindle . . . . . . . . . . . . . . . . . . . 507 55 .6
Second maturation division . . . . . . . . . 36 53 .6
Pronuclei . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 54.0
Eggs in oviduct 16% hours . . . . . . . . . 5o 53 .3
Eggs in oviduct 7.9 hours . . . . . . . . . . . 50 56 .5
picture of the egg as a whole and it is only
recently that such studies have gotten
under Way. This fact does not, however,
minimize the fundamental processes in
the behavior of the egg which only
microscopic preparations can disclose; for
stained preparations have taught us about
the significant behavior of the chromatin,
the chief bearer of hereditary characters.
SHRINKAGE OF THE TUBAL EGG
Can we state in definite figures, then,
with reasonable accuracy, the dimensions
of the ovum in each species of mammal thus far studied? Before answering this
question We must further define it. In the
first place, We must specify the stage of
development considered, for manifestly,
sooner or later, the egg begins to grow.
In this discussion We shall limit ourselves
to the one-celled or undivided stage, or at
least to the stage of early cleavage.
These alone approximate the freshly discharged egg. Now there is considerable
evidence in the literature that the nuclear
changes of first maturation division in the
ovary, the second division, and fertilization after ovulation involve also changes
in the size of the egg, even entirely aside
TABLE 2.
Size: (in micra) of ovarian and tubal egg: calculated by the
prerent writer from tbe atla: of van der Striebt
(1923) amlfram /air ltat paper (1909)
OVARIAN TUBAL
“““‘“‘ aces mas
Man . . . . . . . . . . . . . . . . . . . . . . . . . 141)(1I3
Dog . . . . . . . . . . . . . . . . . . . . . . . . .. IIIX97. xo2.)(87
Cat . . . . . . . . . . . . . . . . . . . . . . . . .. 95x84 81 X77.
Guinea pig . . . . . . . . . . . . . . . . . . . 77x63 63x58
Bat (197.3) . . . . . . . . . . . . . . . . . . .. 95 X78 7oX65
Bat (1909) . . . . . . . . . . . . . . . . . . .. 9o><69 66X58
Mouse . . . . . . . . . . . . . . . . . . . . . .. 8oX62. 53x53
from the small mass of cytoplasm and
nuclear material extruded with the polar
bodies. Long and Mark state that a
maximal size of the egg is reached at the
end of the so-called period of growth,
while the egg nucleus is in the condition
of a vesicle. From this time to fertilization there is a progressive slight shrinkage, after which the egg increases in size
with its sojourn in the tube. Long and
Mark's figures are quoted in Table I
because they are unique in the number of
eggs measured and the care with which
the work was done.
Lams and Doorme (1907) were probably the first to call attention to this
phenomenon, which 0. Van der Stricht,
their teacher, believed to be quite general
for mammalian eggs. This author also
believed that the low- point varies in
different mammals, but in view of the
condition of the material on which he
made his measurements We may well
doubt that so nice a point could have been
determined‘ by him. That the ovarian
egg is generally reported to be larger than
the tubal egg there is no doubt, as one
can readily see by a study of the literature.
Sobotta in 1905 set down the mouse egg
at 59 micra for both the ovarian and the
tubal stages, but in a later paper he granted
65 to 70 micra to the ovarian, 60 to the
tubal ovum. From Van der Stricht's
extensive data I have calculated Table 7.,
from the standpoint of the present comparison. This author's paper of 197.3
constitutes a veritable atlas of the early
history of the mammalian egg, based on
the most extensive and varied series in
the world.
A similar excess in size of ovarian over
tubal ova I have reported for the opossum,
where, however, the former were measured
in situ, the latter after being washed
from the tube and studied singly. Other
data in the literature were mostly based
on material fixed and sectioned, usually in
situ. The measurements are thus open to
objection; both ovarian and tubal eggs
should be studied alive in the same
medium. This I have done in the case of
the rabbit. Ovarian eggs removed from
the right ovary, excised surgically seven
hours post coitum, measured on the average 17.7. x 119 micra. Nineteen hours
later two eggs Were taken from the left
fallopian tube; they were in the two-celled’
stage when removed, but divided again
and were four-celled before they could be
photographed. They measured 12.4 X 17.4
micra, a little larger than the ovarian
eggs. Dr. W. H. Lewis killed a rabbit
ten hours post coitum, when some of the eggshad been shed while others were still
retained in the follicles. One ovarian
egg measured 119, the other 133 micra;
the average for tubal ova was 17.4 micra.
The progressive changes in size of the
mammalian egg, therefore, await more
extensive study. This Will be made by
better methods in connection with other
studies on the egg.
SHRINKAGE DUE TO fiXATION
The size changes incident to- the vital
activities of the developing egg, as set
forth above, become insignificant when
compared with the shrinkage caused by
fixing agents and the after-treatment used
in making microscopic preparations.
Hence we must know under what conditions the eggs are measured. Since the
introduction, about 1870, of the paraffin
method of section cutting, by which an
egg one—tenth of a millimeter may readily
be cut into ten or more sections of convenient thickness, the tendency to use the
method on all occasions has been overdone, for it has been substituted for the
older and, for some purposes, better
method of studying the object in the living
state. Refined technique has often been
made an end in itself, rather than an aid.
fixing fluids, too, cause a variable amount
of shrinkage, those containing osmic acid
the least of all. The rate at which the
reagents are changed is another important
factor. With the most careful treatment
the Writer kept the shrinkage down, for
the most part, to about 15 per cent; more
speed in handling the material would certainly have resulted at times in a 30 per
cent shrinkage, which is not unusual in
much of the work published on the
mammalian egg. The study of the mouse
egg might be cited in this connection.
Sobotta (1905) gives 59 micra for the
average mouse egg fixed in either ovary or
tube, but in a later paper states that 65 to 70 micra is nearer the truth for the ovarian
egg. Kirkham (1907), basing his measurements on the living egg, gives 80 micra
for the ovarian, 73 to 78 for the tubal egg.
The writer recently photographed five
ovarian eggs of a field mouse (sp. 2‘) and
these averaged 95 micra in diameter. It
is therefore evident (and on this point
there is no disagreement among the little data. The proneness of authors to
let the reader make the calculations for
himself is illustrated by Van der Stricht's
invitation (192.3, page 2.79): “I shall not
speak further about the exact dimensions
of the eggs [he had not yet given any
‘exact dimensions’]—it is easy to calculate
them from the drawings.” This invitation I have. accepted, as did Corner
TABLE 3
Measurment: made from photograph: of mammalian egg: taken in the living state. Negative: on file at the Carnegie
Laboratory of Embryology, Baltimore. Diameter of o1/am proper (oitellm) or inner diameter of
zona. Dimem-ion: in miera
ANIMAL STAGE "U32: 01' AVERAGE SIZE INVESTIGATOR
Rabbit 1-4-celled 6 12.6 Gregory
Early cleavage 2.2. 12.4 Lewis
Ovarian 1 119 Lewis
Ovarian 1 133 Lewis
Ovarian 5 12.o Hartman
2.—4—celled 2. 12.4 Hartman
Mouse Ovarian 5 95 Hartman
Dog 1-celled tubal 3 12.0 Hartman
Pig 1-celled tubal 4 111 Heuser and Streetet
Cleavage 8 12.1 Heuser and Streeter
Opossum 56 1-celled tubal 2. 145 Heuser and Hartman
313 1-celled tubal 2. 12.6 x 1o6 Heuser and Hartman
351 1-celled tubal 11 108 x 1oo Heuser and Hartman
336, 337 Cleavage 6 151 x 140 Heuser and Hartman
842. Early tubal 7 157 x 152. Hartman
833 1-celled tubal 2. 173 Hartman
766 Uterine 1 141 Hartman
Various litters of Uterine 100 155 Hartman
opossum
authorities) that the fixed egg is no
criterion of normal size of the living,
functioning egg.
A further complication is encountered
if one attempts to calculate the size of eggs
from authors’ illustrations where the
magnifications are indicated. Articles
that fail to indicate magnifications are,
of course, of no avail for the purpose of
this study (e.g., Rein, Melissinos). Were
we to refrain entirely, however, from
making calculations from the illustrations
in the literature, there would remain jolly
(CoWdry’s "Special Cytology,” volume
II, page 1112.). The results must, however, fall somewhat short of the true
diameter of even the fixed egg, for sections
are selected that pass through features of
interest, namely the egg nucleus, division
spindle, and polar bodies. If these landmarks happen to fall in the middle section
of the series the section fairly represents
the act ual size of the egg; if, on the other
hand, the section is a tangential one, the
egg is actually larger than the section
shows it to be. It is therefore apparent
TABLE 4
Egg: (vitelle: only, or inner diameter of (ma) meamred in prepared section: affixed ovaries. Size: in micra
ANDIAL AUTHORITY IMAXIMUM MINIMUM AVERAGE REMARKS
Dasyurus Hill, 1911 7.70 x 7.60 7.80 x 17.6 7.40 Stated
Didelpbis aurita Hill, 1918 — — 147. x 17.9 Stated
Didelplvix 7/irg. Hartman, 1919 185 x 150 — — Stated
Armadillo Newman, 1917. —-— —— 53 Calculated
Mouse Sobotta, 1895 —— — 59 Stated
{ 2: :2 : §§Z‘E:2ff2f;.““°°‘
Gerlaeh, 1906 71 x 55 53 63 x 54 Calculated (few eggs)
Kirkham, 1907 —-— — 71 x 64 Calculated (7. eggs)
Lams and Doormc I907 —- — 68 Osmic fix., stated
’ — — 67. Non-os. fix., stated
Long and Mark, 1911 77 50 59 Cf. Table 1
Van der Stricht, 197.3 93 x 64 67 x 60 80 x 67. Cf. Table 7.
Kremer, 197.4 75 x 75 65 x 55 70 x 70 Calculated
Rat Kirkham and Burr, 1913 77 x 77. 65 x 55 69 x 63 Calculated
Sobotta and Burckhard, 65 6o — Stated
1910
Kremer, 197.4 63 x 55 45 x 45 53 x 47 Calculated
Guinea-pig Rein, 1883 —— — 84 From Lams, 1913
Lams and Doormc I907 —-— -— { 83 Osmic flx., stated
’ — —— 79 Non-osmic fix., stated
was 91 2:8  75  §:::::;d.f:;:,fg“°"
Lams I913 __ _ { 80 fleming flx.; calculated
’ 70 N on-osmic fix.; calcu. lated
0. Van der Stricht, 197.3 87 x 60 67 x 60 77 x 63 Cf. Table 7.
Dog 0. Van der Stricht, 197.3 17.3 x 87 95 x 80 111 x 97. Cf. Table 7.
Cat R. Van der Stricht, 1911 180 x 98 111 x 90 ~ 7. eggs; calc.
Longley, 1911 97. 79 x 74 — Calculated
0. Van der Stricht, 197.3 100 x 90 87 x 81 95 x 84 Calculated
Ferret Robinson, 1918 133 x 116 98 110 Calculated
Horse Hartman —— — 135 Carnegie collection (in
toto prep.)
Bat Van Beneden and Julin, 113 90 104 Calculated
1880
0. Van der Stricht, 1969 110 x 105 50 x 44 95 x 78 Many eggs; calculated
0. Van der Stricht, 197.3 97 x 7o 81 x 67 90 x 68 3 eggs; calculated
Human Nagel, 1888 199 x 194 170 x 165 — 7. eggs (with zona)
Waldeyer -— — 130 1 egg
Bumm (Gynecology) —— — 7.00 Stated (with zona)
Késllikcr (Grundriss) —-— — 7.oo Stated (with zona)
0. Van der Stricht, 1905 157 17.0 x 110 140 x 17.1 Calculated from 13 figs.
0. Van der Stricht, 197.3 179 x 103 107 x 97. 141 x 103 Calculated 4 eggs
Hartman —-— — 17.0 x 110 1 egg (Carnegie)
Monkey
(M. mmutrinus) Selenka, 1903 —— — Ca. 40 Stated
(M. rbmu) Hartman 108 x 100 105 x 90 110 x 93 Carnegie Coll.
Gibbon Hartman —-— 87 x 80 — 1 egg (Carnegie Coll.)
Gorilla Hartman —— — 90 x 87 1 egg (Carnegie C011.)
378
TABLE 5
Tubal am medied in section: after fixation, either in tine ar after firxt being remwed from the tube. .1‘ tarred* in the latter
case. Size in micro (vitellu: or true ovum only)
ANIMAL AUTHORITY mxunm mnmuu AVERAGE nmmgxs
Didelphis (opossum) *Hill, 1918 (D. aurita) 170 x 150 117. x 100 17.6 x 117 Cleavage; calculated
*Hartman, 1919 (D. 1/irg.) 148 x 17.5 107. x 76 17.7. x 104 Stated
Hedgehog *fischer, A. 46 x 40 —— — One 3-celled egg; calculated
Baumeister, I913 —— —— 69 x 54 One egg; calculated
Mole Heape, 1886 159 C?) 17.0 17.5 Calculated
Mouse Sobotta, 1895, 1898 — — 59 to 60 Stated
— —— 6 O ' . Lams and Dootmc’ 190 7 { — 5: Nztlifislildcid 1sit:.t;c;lI:ated
Gerlach, 1906 68 x 55 48 x 41 60 x 48 Many eggs
Anikiew, 1908 60 x 58 — — Calculated
Long and Mark, 1911 —— — 55 Cf. Table 1
Kat Sobotta and Burckhard, 60 55 — Stated and calculated
1910
Kirkham and Burt, 1913 67 x 63 55 x 53 61 x 57 Calculated
Huber, 1915 70 x 67. Few eggs
. O . ._
Guinea-pig Lams and Doormc, 1907 {  N:)1:11:sf!'1n:cic,  stand
90 x 74 77. x 58 87. x 67 Cale. from figures X
Rubaschkin, 1905 530
60 55 — Stated
Lams, 1913 60 45 55 Calculated
Rabbit *Assheton, 1894 145 130 133 Cale. 7 figs. X 165
*Nihoul, 197.6 96 x 97. 86 x 8o 91 x 83 Calc. Benda fix.
Dog *0. Van der Stricht, 197.3 117 x 103 83 x 70 107. x 87 Calculated; cf. Table 7.
Cat R. Van der Stticht, 1911 114 x 100 89 x 75 105 x 93 Calculated
Bonnet, 1897 — -— 100 1 egg ca1c.; fleming fix.
Bonnet (text), 197.7. — —— 111 x 106 1 egg calc.
*Longley, 1911 — — 99 x 81 Calculated
Hill and Tribe, 197.4 90 x 80 69 x 57 87. x 7o Stated
Sheep *Assheton, 1898 17.3 105 114 Calculated
Pig *Assheton, 1898 116 81 100 x 95 Calculated
Deer Keibel, 1901 115 111 x 106 113 x 108 Calculated
Bat Van det Stricht, 1909 83 x 73 60 70 x 65 "Selected as typical"
Van det Stricht, 197.3 97 x 70 54 x 53 73 x 67. Cf. Table 7.
Hartman 87 x 73 Carnegie Coll.; 1 egg
Tatsius Hubrecht, 1907. 82. x 70 77. 77 x 71 Calculated
Monkey (M. neme:- Selenka, 1903 — — 40 4-celled
trimet)
that measurements based on even the best
fixed material, especially th-at fixed in
situ, fall short of the actual size of the
living egg. This is entirely aside from the
irregular shapes which the eggs assume
when fixed in situ. I have seldom seen a
nicely rounded egg fixed and prepared in
the fallopian tube of any animal and I
presume that Sobotta had the same experience. Nevertheless this author, by
“artistic license," pictures his specimens large collection of opossum eggs at the
University of Texas. Many batches of
eggs and embryos were at that time photographed in physiological salt solution
immediately after removal from the
animal. With the assistance of Dr.
Heuser, at the Carnegie Laboratory of
Embryology, many remarkable photographs of the living rabbit egg in cleavage
and germ-layer formation have been secured by Dr. P. W. Gregory and others,
TABLE 6
Size: of egg: removed from ovary and meamred in living state. Size: in micm. Vitellu:  (Sea alm Table 3)
ANIMAL AUTHORITY MAXIMUM MINIMUM AVERAGE REMARKS
Ornithorhynchus Gatenby and Hill, 192.4 4.4 x 4.16 — — 4400 micra
mm.
Ornithorhynchus Caldwell, 1887 2.5 mm. —- — 2.5oo micra
Echidna Caldwell, 1887 3 .o mm. — — 3ooo micra
Mouse Kirkham, 1907 — — 8o
Guinea-pig Bischoff, 1852. — — 75 Calc. from figs. X 350
Reichert, 1861 —- — 87 Calc. from figs. X 32.0
Rein, 18_83 — — 65 Calc. from 1 fig.
Rabbit Bischoff, 1842. 182. 142. 161 Stated (1 P.Z. = 2.5 mm.)
Dog Bischoif, 1845 190 166 — Stated
Bischoff, 1844 166 160 — Stated (from polyov. foll.)
Cat Krause, 1838 170 no 144 Six eggs; calculated
Longley, 1911 130 105 — Stated
Goat Krause, 1838 185 17.0 — 3 eggs; calculated
Pig Bischoff, 1844 140 111 — Several eggs
Lowery, 1911 157 — — "Largest of many"
Bat Van Beneden and Julin, 1880 — — 105 1 egg
Macaque Krause, 1838 140 92. 118 3 eggs
in what he considered their normal
rounded shape. His drawings are the
illustrations of maturation, fertilization
and cleavage of the mammalian egg most
used in the embryological textbooks of
all countries.
THE STUDY OF THE LIVING EGG
What were perhaps the beginnings of a
new method in the study of the mammalian egg were made in 1918 by Dr. C. H.
Heuser, who, with the writer, under the
auspices of the Wistar Institute, made a and negatives of the early stages of living
eggs of other mammals are rapidly accumulating. Indeed, at this laboratory Dr.
W. H. Lewis is doing pioneer work in the
cinematography of the developing rabbit
egg, as he is combining tissue culture with
motion picture technique. He has thus
far succeeded in keeping the egg alive in
rabbit blood plasma for over a week
and photographing its normal development for over four days—that is, through
cleavage and the formation of the seg
mentation cavity. The observer may see the entire process before his eyes in a few
minutes and much may be learned which
would absolutely escape notice by other
methods.
taken in Texas and of the rabbit egg after
photographs taken by Dr. Gregory and
Dr. Lewis.
This section on the measurement of the
TABLE 7
Tubal um mulled in the living state. Size: in micra. Meamrement: of ovum proper or vitellu: only, or in a few carer,
chiefly early cleavage rtagee, inner diameter of game.
See who Table 3
ANIMAL AUTHORITY MAXIMUM mmnnm AVERAGE REMARKS
Platypus Burrell, 197.7 3.0 mm. — — Whole egg 17 x 14 mm.
Echidna Simon, 1894 — —— —- Whole egg 16 x 13 mm.
Dasyurus Hill, 1911 300 x 7.90 —— 7.50 x 7.40 Stated
Opossum Hartman, 1919 157 x 157. 108 x 100 130 x 17.3 Stated
Hedgehog Keibel, 1888 17.0 — no (In toto in OsO4); stated
Mouse Kirkham, 1907 78 73 — Stated
Rat Bischoff, 1844 — -—— 100 One egg; stated
Kirkham and Burr, 1913 — — 79 Stated
Guinea-pig Bischofl’, 1857. 106 91 — Stated (3 P.Z. = 80 mm.)
Bischoff, 1857. 74 70 77. Calc. from figs. X 350
Bischolf, 1857. — — 75 After Lams
Reichert, 1861 — —- 87 After Lams
Hensen, 1876 87. 65 75 Calc. from sev. eggs
Rabbit Bischoff, 1847. 180 139 160 Stated.
Costl, 1834-1849 — — 17.0 Calculated
Hensen, 1876 -— — 1o3 x 93 Calc., 1 fig.
Gréwsdew, 1896 144 17.0 133 Calc., sev. figs.
Dog v. Baer, 187.7 — — 144 "1/15 of a line"
Bischoff, 1845 174 17.5 145 "3 P.Z. = 80 mm."
Hartman — — 17.0 Carnegie Coll.
Cat Longley, 1911 Cf. Table 3
Hill and Tribe, 197.4 153 x 136 119 x 110 130 x 119 6 eggs in osmic fix.
Sheep Bischoff, 1844 —~ -—— 140 1 egg; stated
Deer Bischoff, 1854 115 Stated
Pig Corner and Amsbaugh,1917 145 135 140 14 eggs, 3 litters
Heuser and Streeter, 197.8 131 116 17.1 10 eggs, 3 litters
Bats Cspp.) Van Beneden, 1911 95 86 91 7. eggs (118, 108 with
zona)
Monkey Corner, 197.3 86 83 — 7. eggs, degenerating
Allen, 197.7 104 87 —-— 7. eggs, degen.
Allen, 192.8 104 1 egg, degen.
Hartman - — 107 1 egg, degen.
Human Allen, et al., 197.8 184 117 137. With zona
Photography thus applied to embryology may therefore be expected to yield
valuable results. Certainly, from negatives the size of the eggs may be calculated at one’s leisure. In Table 3 I have
given a number of measurements, chiefly
of the opossum egg after photographs
living egg must not be closed without
mention of an event of the greatest significance; namely, the discovery of the
first human tubal ovum by Edgar Allen
and associated surgeons (Dr. Pratt of
Detroit and Drs. Newell and Bland of St.
Louis). Seven eggs were recovered from
TABLE 8
Interpretive table, giving tbe reviewer’: estimate of tbe true
average size of tbe egg of various species of mammal thus
far studied. Studies on tbe living egg are considered
tbe more authoritative and due correction is made for
data based on fixed eggs. Dimension of vitellus only.
fen/einson (1915) probably give: size of entire egg
MOST
mm .::::;B;:. ”3«‘>‘»‘?’s"‘
IN uxcxm TABLE
Monotrcmata
Platypus . . . . . . . . . . . . . . . . . . . 1.5 mm.
Echidna . . . . . . . . . . . . . . . . . . . 3 .0 mm.
Marsupialia
Dasyurus . . . . . . . . . . . . . . . . . . 2.40 2.80
Didelphis . . . . . . . . . . . . . . . . . . 140-160 130
Edentata
Armadillo . . . . . . . . . . . . . . . . . 80
Cetacea
Whales . . . . . . . . . . . . . . . . . . . . 140
Insectivora
Mole (Talpa) . . . . . . . . . . . . . . 12.5 90
Hedgehog (Erinaceus) . . . . . . 100 60
Rodentia
Mouse . . . . . . . . . . . . . . . . . . . . 70-75 60
Rat . . . . . . . . . . . . . . . . . . . . . . . 70-75
Guinea pig . . . . . . . . . . . . . . . . 75-85 80
Lagomorpha
Rabbit . . . . . . . . . . . . . . . . . . . . 120-130 150
Carnivora
Dog . . . . . . . . . . . . . . . . . . . . . . . 135-145 180
Cat . . . . . . . . . . . . . . . . . . . . . . . 17.0-130
Ferret . . . . . . . . . . . . . . . . . . . . . 17.0
Ungulata
Horse . . . . . . . . . . . . . . . . . . . . . 13;
Sheep . . . . . . . . . . . . . . . . . . . . . 17.0 130
Goat . . , . . . . . . . . . . . . . . . . . . . 140
fig . . . . . . . . . . . . . . . . . . . . . . . 17.0-14o
Cheiroptera
Bat . . . . . . . . . . . . . . . . . . . . . . . 95-105
Lemurs
Tarsius . . . . . . . . . . . . . . . . . . . . 90
Primates
Gibbon . . . . . . . . . . . . . . . . . . . . 1 10-110
M. rbesus . . . . . . . . . . . . . . . . . . 110-17.0
Gorilla . . . . . . . . . . . . . . . . . . . . 130-140
Man . . . . . . . . . . . . . . . . . . . . . . 130-140
six women. The measurements were
made on the fresh eggs and are given in
Table 7. Previously Corner (197.3) and
Allen (197.7) had recovered eggs from the monkey. These were also measured before fixation (Table 7). The egg of
Macacus nemestrinns, in the four-celled
stage, was studied by Selenka (1903)
in the fixed tube and measured in the
shrunken state only 40 micra. These
cases mark the beginning of the study‘ of
the earliest tubal ova in Primates.
THE SIZE OF THE MAMMALIAN EGG
We now return to the original question,
How large is the mammalian egg? The
reflections set down in this review force
the conclusion that for no species of
mammal is there agreement on measurements of the egg. Those reported have a
range far in excess of variations in the
normal living egg, great as these variations undoubtedly are. Perhaps the smallest and the largest of a given species, that
is, the extremes in size range of living eggs,
are not viable. But We know nothing
about this problem; it is one that only
tissue—culture methods can solve. The
reviewer has therefore thought it desirable
to bring together the data contained in
the World's literature (at least in that
major portion available to him) on the
size of the mammalian egg and to present
it for what it is worth. If the figures are
unsatisfactory the study will serve to emphasize the need of further work and more
careful methods than those employed in
respect to the making of measurements in
the past. For the convenience of the
reader the data have been condensed into
Tables 4, 5, 6 and 7, classified according
to the headings of the tables. As a summary of the whole the writer has been
bold enough tentatively to put down in
Table 8 his own ideas as to the normal
range of the average or modal egg size
for the various species of mammals. The
table is based first on the best measurements of the living egg and second on an
evaluation of the data given by the various
authors, due correction being made for
the methods used. The table should,
however, be regarded merely as a basis for
revision in the future. Nevertheless, a
perusal of the figures will show that Van
der Stricht was probably right when he
stated the human egg to be the largest,
that of Muridae the smallest among the
mammiferous animals. It is also apparent
that the smallest eggs are probably not as
small as the former estimates would have
them, the largest not as large as previously
stated. The mouse egg is nearer 7o than
50 micra, the human egg nearer 150 than
zoo. In other Words the table has a tendency to level up the differences in the
sizes of mammalian eggs.
finally it is hoped that the appended
literature list will prove helpful to those
studying the mammalian ovum for thc
first time. Studies on the ovum just
before and just after its discharge from the
ovary Were, of course, considered the
essential studies. Others might have been
added which give sizes of the ovarian egg
incidental to histological studies on the
ovaries; but it is believed that the list
includes a sufficient number of these. The
list of papers and books on tubal ova,
practically all of which have been consulted by the writer, is believed to be
fairly complete.
LIST OF LITERATURE
ALLEN, EDGAR. 1927. The menstrual cycle in the
monkey, Macacus rhesus: Observations on
normal animals, the effects of removal of the
ovaries and the effects of injections of ovarian and
placental extracts into the spayed animals.
Contrib. to Embryol. Vol. 19; Carnegie Inst. of
Wash. Publ. No. 380, pp. 1-44.
197.8. An unfertilized tubal ovum from
Macacus rhesus. Anat. Rec., 37: 351-356.
ALLEN, EDGAR, J. P. Pxxrr, Q. U. Nnwunr. and L.
BLAND. 197.8. Recovery of human ova from
the uterine tubes: time of ovulation in the menstrual cycle. Journ. Am. Med. Assn., 91 (14):
1o18.
Amxnzw, A. 1908. Ueber den Ban des Eiprotoplasma und fiber die excentrische Lagerung der
Kernflguren in einigen Tubeneiern der Hausmaus
(Mus musculus, vat. alba). Anat. Anz., 37.:
320-330.
Assnmox, R. 1894. A re-investigation into the
early stages of the development of the rabbit.
Quart. Journ. Micr. Sci., 37: 113-164.
1898a. The development of the pig during
the first ten days. 15121., 41: 329-359.
1898b. The segmentation of the ovum of
the sheep, with observations on the hypothesis
of a hypoblastic origin for the trophoblast.
16121., 41: 7.o5—~7.67..
von Bum, KARL ERNST. 187.7. Epistola de ovi
mammalium et hominis genesi. (See also B.
Ottow, translation into German, 197.7.)
BALLOWITZ, E. 1906. Zur Kenntnis der Eifurchung
bei den Insectivoren. Anat. Anz., 7.9: 674.
(Prelim. paper; see Baumeister and Kunsenmiiller.)
BARRY, M. 1838. Researches in embryology, first
series, Phil. Trans. (Ovarian follicles and
eggs.)
1839. Researches in embryology, second
series. (first description of cleavage of cytoplasm.) Ibidrm.
1840. Researches in embryology, third
series. Ibidam.
1841. Supplementary note to a paper
entitled: Researches in embryology, third series:
A contribution to thephysiology of the cell.
Ihidem, p. 193.
1843. Spermatozoa observed within the
mammiferous ovum. Ibidm, p. 33. (See also
Phil. Mag., 1843, May, p. 415.)
Baummsnzn, TH. 1913. Die Entwicklungsvorgéinge
am Keime des Igels (Erinaceus Europaeus L.)
von seinem Uebertritt in den Uterus bis zur
Ausbildung des Mesoderms. Zeitschr. f. wiss.
Zool., 105: 1-86.
Bwnnxnonn, J. 1888. Ueber die Umkehr der
Keimbliitter bei der Scheermaus (Arvicola
amphibius, Desm.). Arch. f. Anat. u. Physiol.,
Anat. Abt., pp. 7.79186. (A 47.-celled stage,
48;», fixed in situ in 50% alcohol.)
Brsc11om=,Tr1. L. W. 1847.. Entwicklungsgeschichte
der Sélugethiete und des Menschen. Leipzig.
B1sc1=1o1=r, T11. L. W. 1844. Beweis von der Begattung
unabhangiger periodischer Reifun g und Loslosung
der Eier der Séiugethiere und des Menschen als die
erste Bedingung ihrer Fortpflanzung. Giessen.
1845. Entwicklungsgeschichte des Hundc
eies. Braunschweig.
1857.. Entwicklungsgeschichte des Kanincheneies. Braunschweig.
1857.. Entwicklungsgeschichte des Meetschweinchens. Giessen.
1854. Entwicklungsgcschichte des Rehes.
Giessen.
1863. Ueber die Rauzeit des Fuchses und
die erste Entwicklung seines Eies. Sitz.
Ber. d. k. bayrischen Akad. zu Mfinchen.
1863. Ueber die Bildung des Séiugethiereies
und seine Stellung in der Zellenlehre.
1877. Historisch-kritische Bemerkungen
zu den neuesten Mittheilungen fiber die erste
Entwicklung der Siiugethiereier. Mfinchen.
BONNET, R. 1884. Beitriige zur Embryologie der
Wiederkiiuer, gewonnen am Schafei. Arch. f.
Anat. u. Physiol., Anat. Abth., pp. 17o-7.30.
(Later stages cont. ibidem, 1889, pp. 1-76.)
1897. Beitrige zur Embryologie des
Hundes. Anat. Hefte, (1. Abt.), 9: 419-517..
(Continued ibidem, 1901, vol. 16, pp. 231-337..)
1 891 . Grundriss der Entwicklungsgeschichte der Hausthiere. Berlin.
1910. Lehrbuch der Entwicklungsge
schichte. 7.nd. ed. 1917.; 4th ed. 197.0; Berlin.
BRANCA, A. 1910. Caracteres des 7. mitoses de
maturation chez l'homme. C. R. de l'Assoc.
des Anat., p. 5.
BURRELL, HARRY. 197.7. The Platypus: its discovery, zoological position, form and characteristics, habits, life history, etc. Sydney.
CALDWELL, W. H. 1887. The embryology of
Monotremata and Marsupalia Part I. Phil.
Trans. Roy. Soc., 178B: 463-486. (Brief abstract in Nature, March 31, 1887, which was
copied in Amer. Nat. for May, 1887.)
Conmm, G20. W. 197.3. Ovulation and menstruation in Macacus rhesus. Contrib. to Embryol.,
Vol. 15, Carnegie Inst. of Wash. Pub. No. 337..
CORNER, G110. W., and A. E. AMSBAUGH. 1917.
Oestrus and ovulation in swine. Anat. Rec.,
17.: 7.87-7.91.
Cos-rn, J. J. M. C. V. 1834. Recherches sur la
génération des mammiferes. Paris.
1841. Histoire de la génération et du
développement.
1847-59. Histoire générale et particuliere
du développement des corps organises. (Text
and atlas dated 1849 consulted.)
THE QUARTERLY REVIEW OF BIOLOGY
CRUIKSHANK, WM. 1797. Experiments in which on
the third day after impregnation the ova of
rabbits were found in the Fallopian tubes; and
in the fourth day after impregnation in the uterus
itself; with the first appearance of the foetus.
Phil. Trans. Roy. Soc., vol. 18, pp. 119-137,
abridged ed. of 1809. (first observation of
tubal ova; author just missed discovering the
history of the egg of the rabbit 30 years later
credited to von Baer.) Transl. in Reil’s Archiv
f. d. Physiologic, Vol. 3, 1799.
VON’ EBNER, V. 19oo. Ueber das Verhalten der
Zona pellucida zum Ei. Anat. Anz., 18: 55-67..
Fxscmm, A. 1905. Zur Kenntnis der Struktur des
Oolemmas der Salugetiereierzellen. Anat. Hefte,
1. Abt., 7.9: 557-585 (Heft 89).
GASSMANN, 0. 197.3. Das Schicksal des unbefruchteten Eies des Menschen. Diss., Gottingen.
(Rev. in Zentrbl. f. Gyn§ik., 197.5, 49: 393.)
Gxrnunr, J. BRONTE. 197.7.. Some notes on the
gametogenesis of Ornithorhynchus paradoxus.
Quart. Jour. Micr. Sci., 66: 475-500.
GATENBY, J. Bnomfi, and J. P. HILL. 197.4. On an
ovum of Ornithorhynchus exhibiting polar
bodies and polyspermy. Quart. Jour. Micr.
Sci., 68: 7.7.9-2.38.
Gunmen, L. 1890. Beitréige zur Morphologie und
Physiologic des Ovulationsvorganges der Sangetiere. Sitz.-Ber. d. physik-med. Societéit in
Erlangen, Heft 7.7., pp. 43-61.
1906. Ueber die Bildung der Richtungs
ktirper bei Mus musculus. Festschrift f. Rosen
thal, Wiesbaden.
ma GRAAF, R. 1677.. De mulierum organis generationi inservientibus tradatus novus. Lugd.
Batav.
Gxossnn, Ono. 197.7. Friihentwicklung, Eihaut—
bildung und Placentation des Menschen und der
Séiugetiere. Miinchen.
Gxwsmzw, W. S. 1896. VVrsuche fiber die kiinstliche Befruchtung von Kanincheneiern. Arch.
f. Anat. u. Physiol., Anat. Abth, pp. 169-304.
HAACKE, W. 1884. Meine Entdeckung des Eierlegens der Echidna hystrix. Zool. Anz., 7:
647-653
HEAPE, W. The development of the mole (Talpa
Europea); the ovarian ovum and segmentation
of the ovum. Quart. Journ. Micr. Sci., 7.6:
157-174. (Later stages were described ibidem,
1883, vol. 7.3, pp. 412-457.).
1905. Ovulation and degeneration of ova
in the rabbit. Proc. Roy. Soc., 76 : 7.60.
HARTMAN, CARL G. 1919. Studies in the development of the opossum (Didelphis virginiana L.)
III. Description of new material on maturation, cleavage, and entoderm formation. IV. The
bilaminar blastocyst. Journ. of Morphol., 32.:
1-142.. (See also ibidem, vol. 2.7, pp. 1-83.)
HARTMAN, Cam. G. 192.4. Observations on the
viability of themammalian ovum. Amer. Jour.
Obst. and Gynec. 7: 1-4. (See also Smith,
Septima C.)
HAUSMANN. 1840. Ueber die Zeugung und Entstehung des wahren vveiblichen Eies, etc. Hannover (not accessible.)
Hnxsxm, V. 1876. Beobachtung fiber die Befruchtung und Entwicklung des Kaninchens und
Meerschweinchens. Zeitschr. f. Anat. und
Entwicklgesch., 1: 2.13-2.73 and 351-42.3. (See
also Hensen's Article: “Zeugung" in Hermann's
Handbuch f. Physiologie).
Hnusnn, C. H., and Gnono1:'L. Srnnnrnn. 192.8.
Early stages in the development of the pig from
the period of the initial cell cleavage to the time
of the appearance of limb buds. Vol. 2.o,
Contrib. to Embryol., Publication of the Carnegie
Inst. of Wash. No. 394, pp. 1-30.
HILL, J. P. 1910. The early development of the
Marsupalia with especial reference to the native
cat (Dasyurus viverrinus). Quart. Jour. Micr.
Sci., 56: 1-134.
1918. Some observations on the early
development of Didelphys aurita. Quar. Jour.
Micr. Sci., 63: 91-139.
HILL, J. P., and .MARG. T111311. 192.4. The early
development of the cat (Felis domestica).
Quart. Jour. Micr. Sci., 68: 513-602..
Ho1.1., M. 1891. Ueber die menschliche Eizelle.
Anat. Anz., 6: 551-556.
1893 . Ueber die Reifung der Eizelle bei den
Siiugetieren. Sitz.-Ber. d. kais. Akad. d. Wiss.
(Math-naturwiss. Klasse), Wien, Abth. III,
101: 2.49-3o9.
Human, G. CARL. 1915. The development of the
albino rat (Mus norvigicus albinus). Journ. of
Morph., 2.6: 2.47-387.
Honruzcnr, A. A. W. 1902.. Furchung und Keimblattbildung bei Tarsius spectrum. Verhandl.
kon. Akad. van Wetenschapen, Amsterdam.
Vol. 8.
. 1912.. Friihe Entwicklungsstadien des I gels
und ihre Bedeutung fiir die Vorgeschichte (Phylogenese) des Amnions. Zoologische J ahrbiicher,
Suppl. XV, Festschr. Spengel, 2.: 739-774.
HYRTL, J. 1878. Lehrbuch der Anatomic des
Menschen. Wien. (Page 776, description of an
alleged human ovum over o.3oo mm. in diam.)
JENKINSON, J. W 19oo. A re-investigation of the
early stages of the development of the mouse.
Quart. Jour. Micr. Sci., 43: 61-82..
385
JENKINSON, J. W. 1913. Vertebrate Embryology.
Oxford. (Gives a table of egg sizes.)
JONES, Tnos. WHARTON. 1837. On the first changes
in the ova of Mammifera in consequence of impregnation, and the mode of origin of the
chorion. Phil. Trans. Roy. Soc., 2.: 339-345.
(Varied the mistake of deGraaf by confusing the
liquor folliculi with gelatinous envelope of the
rabbit egg).
1838. On the ova of man and mammiferous
brutes as they exist in the ovaries before im
pregnation and on the discovery in them of a
vesicle. London Med. Gazette. (On the ger
minal vesicle of Purkinje).
1885. On the ova of man and the mammifera before and after fecundation. The
Lancet, 2.: 2.83-2.84; 332.-333. (Priority claim
polemic, chiefly contra Barry; made nice needle
dissections of the ovum for study of zona).
K2A'.pvn1.1, J. 1908. Anatomic und Physiologic des
Ovariums der Wiederkiiuer und Schweine. Diss.
Bern.
1908. Beitrag zur Anatomic und Physiologie der Ovarien der wildlebenden und gezéihmten Wiederkiiuer und Schweine. Handwirtsch.
Jahrb. Schweiz, 2.2.: 53-12.9.
KEIBEL, FR. 1888. Zur Entwicklungsgeschichtc
des Igels. Anat. Anz., 3: 632-637.
V 1891. Ueber die Entwicklung des Schweines. Anat. Anz., 6: 193-198. (Prelim. Account.)
1894. Studien zur Entwicklungsgeschichte
des Schweines (Sus scrofa dom.). Schwalbc's
Morphol. Arbeiten, 3: 1-140. (Continued
ibidm, 1896, 5: 17-168).
1897. Normentafeln zur Entwicklungsges
chichte des Schweines (Sus scrofa dom.). Jena.
1899. Zur Entwicklungsgeschichte des
Rehes. Verh. Anatl Ges., Anat. Anz. Ergiinz.
Heft, 16: 64.
1901. Friihe Entwicklungsstadien des
Rehes und die Gastrulation der Siiuger. Verh.
der anat. Gesellsch., Bonn, Anat. Anz., Erginz.
Heft, 19: 184-191.
1902.. Die Entwicklung des Rehes bis zur
Anlage des Mesoblast. Arch. f. Anat. und
Physiol., Anat. Abth., pp. 2.92.-314.
Kxnxrum, W. B. 1907a. The maturation of the
mouse egg. Biol. Bull., 12.(4): 2.59-2.65.
I9o7b. Maturation of the egg of the white
mouse. Trans. Conn. Acad. of Arts and Sci.,
13: 65-87.
K6LL1xnn, ALn1m'r. 1879. Lehrbuch der Entwicklungsgeschichte der Menschen und der hijheren
Thiere. Leipzig. 2.nd. ed.
KOLLIKER, ALBERT. 1884. Grundriss der Entwicklungsgeschichte des Menschen und der héiheren
Thiere. and ed.
K6x.L1K1=.R, Amamz-r and VON Enmm. 1907.. Handbuch der Gewebelehre des Menschen. 6th ed.,
vol. 3, pp. 402-404. (Gives 7.7.0 to 37.0}; for
the size of the human egg, zona 7 to 11;»; this is
clearly far too high an estimate.)
KRAUSE, C. 1837. “Ei der S2'iugethicre;" pp.
26-30 of article: Vermischte Beobachtungen und
Bemerkungen. Miil1er's Archiv. pp. 1-36.
(Sec tables.)
KREMER, J. 197.4. Das Verhalten der Vorkerne in
befruchtetem Ei der Ratte und der Maus, mit
besonderer Beriicksichtigung ihrer Nucleolen.
Zeitschr. f. mikr.-anat. Forschung, 1(3):
3S3‘39°
197.4b. Studien zur Oogenese der Sangetiere nach Untersuchungen bei der Ratte und
Maus. Archiv f. mikr. Anat., 107.: 337-358.
(Based on Sobotta's collection of 569 ovarial and
144 tubal eggs of the rat and 1700 ovarial and 67
tubal eggs of the mouse—-total 7.480 eggs).
KuNs1:NMi'11.L1m, M. 1906. Die Eifurchung des
Igels (Erinaccus europaeus, L.) Zeitschr. f.
wiss. Zool., 85(1): 74-106.
Kvpmuzn, C. 1887.. Das Ei von Arvicola arvalis
und die vermeintliche Umkehr der Keimbliitter
an denselben. Sitz.—Ber. d. k. bayer. Akad. d.
Wiss. zu Miinchen, pp. 67.1-637. (Youngest
egg has thickest zona yet reported—3o;/.).
LAFAIX, M. 1911. Contributions :1 l’étude de la
fécondation chez les Mammiféres. These No.
314, Paris, 61 pp.
LAMS, H. 1906. Demonstrations £1 l'Assoc. Anat.,
Bordeaux; C. R. p. 144,
1910. Recherches sur l’oeuf de cobaye
(Cavia cobaya), maturation, fécondation, seg
mentation. C. R. Assoc. Anat. Bruxelles, pp.
119-116.
1913. Etude de l’oeuf de Cobaye aux
premiers stades de Yembryogénese. Arch. de
Biol., 7.8: 7.7.9—37.3.
197.4. L’oeuf de la rate pendant les premieres phases de son développement avant son
arrivée dans l’utérus. C. R. Assoc. Anat., pp.
195’I99
LAMS, H., and J. Doolmfi. 1908. Nouvelles recherches sur la maturation et la fécondation dc
l'oeuf des Mammiferes. Arch. dc Biol., 23(2):
259-365. (White mouse and guinea pig).
Lnucxurr, R. 1853. Art.: “Zeugung"in Wagner’s
Handbuch der Physiologic, Vol. 4, pp. 707 E.
(P. 876 reference to Latheby’s alleged cases of
tubal ova in man.)
THE QUARTERLY REVIEW OF BIOLOGY
LEVI, G. 1914. Das Verhalten der Chondriosomen
in den friihesten Embryonalstadien der Singetiere. Anat. Anz., 46 : 187-193. (See also
next.)
1915. Il comportamento dei condriosomi
durante i pit‘: precoci periodi dello sviluppo dei
Mammiferi. Arch. f. Zellforschung, 13:
471‘S7-4LONG, J. A. 1917.. The living eggs of rats and mice.
Univ. of Calif. Pub. in Zool., 9: 105-136. (See
also Mark and Long. N 0 data on sizes.)
LONG, J. A., and Manx, E. L. 1911. The maturation of the egg of the mouse. Carnegie Inst. of
Washington Pub. No. 147.. 77. pp. (See also
Contrib. No. 7.16 Zool. Lab. Museum of Comp.
Zool., Harvard).
LONGLEY, W. H. 1911. The maturation of the egg
and ovulation in domestic cat. Amer. Joum.
Anat., 17.: 139-168.
Lowmur, L. G. 1911. Prenatal growth of the pig.
Am. Jour. Anat., 17.: 107-138.
MARK, E. L., and J. A. LONG. 1917.. Studies on
early stages of development in rats and mice.
III. The living eggs of rats and mice, with
description of apparatus for obtaining and
observing them. Contrib. from Zool. Lab. of
Museum of Comp. Zool., Harvard College.
MELISSINOS, K. 1907. Die Entwicklung des Eies der
Manse von den ersten Furchung-Phéinomenen bis
zur Festsetzung der Allantois an der Ectop1acentarplatte. Arch. f. mikr. Anat., 70: 577-618.
(No magnifications stated for drawings; no sizes
given.)
Mmor, C. S. 1889. Segmentation of the ovum,
with special reference to the Mammalia. Am.
Nat., 7.3: 463-481; 753-769. (Very general; no
sizes given.)
Mmo-r, C. S., and E. Tunes. 1905. Normal
plates of the development of the rabbit (Lepus
cuniculus L.). No. 5 of Keibel's Normentafeln
zur Entwicklungsgeschichte der Wirbelthicre.
98 ppNAGEL, W. 1888. Das menschliche Ei. Arch. f.
mikr. Anat., 31: 347.—47.3. (Gives complete
history of subject to date and good bibliography).
NEWMAN, H. H. 1917.. The ovum of the ninebanded armadillo. Growth of the oocytcs, ma
turation and fertilization. Biol. Bull., 7.3:
roo-140.
NIEOUL, J. 197.6. Rechcrches sur l’appareil endo
cellulaire dc Golgi dans les premiers stades du
développement des Mammiferes. La Cellule,
37: 7.1-40.
VAN OORDT, G. J. 197.1. Early developmental
stages of Manis javanica Desm. Verh. kon.
Akad. van Wetensch., Amsterdam, Sec. 7., Part
XXI, No. 3, 107. pp. (A few shrunken cleavage
stages are included.)
Orrow, B. 197.7. Karl Ernst Von Baer's "Ueber die
Bildung des Eies der Salugetiere und des Menschen,” mit einer biographischgeschichtlicher
Einfiihrung in deutscher Sprache. Voss, Leipzig, 197.7. (Anniversary edition commemorating
the centenary of the discovery of the mammalian
egg»)
Owmv, R. 1834. On the Ova of Ornithorhynchus
paradoxus. Phil. Trans. Roy. Soc., pp. 555-566.
Also 1835. On the young of the Ornithorhynchus paradoxus. Trans. Zool. Soc. London, 1:
7.7.7.-7.18.
1868. The Anatomy of Vertebrates. Vol.
III, p. 717., quotes egg sizes from Darwin's
Variation of Plant: and Animal: under Domesticatian. I have been unable to verify Owen in this
quotation from later editions of Darwin's work.
Sizes quoted, calculated by myself in micra:
man, 141; dog, 158; rabbit, 170; rat, 17.7; mouse,
111; pig, 17.7; cow, 101; guinea pig, 106.
PAINTER, T. 5. 197.8. Cell size and body size in
rabbits. Jour. Exp. Zool., 50: 441-454.
(Polish rabbit's eggs: 12.0, 17.0, 17.0, 17.6 micraav. 17.1;flemish Giant's eggs; 116, 118, 17.0, 17.0,
17.0, 17.0, I7.6—av. 17.0.)
PATTEN, BRADLEY M. 197.7. The Embryology of
the Pig. Philadelphia.
Ponm. 1912.. Unbefruchtetes Ei. Zentrbl. f.
Gyn£ik., 46: 1490. (Alleged human eggs.)
Rmcnmvr, K.-B. 1861. Beitréige zur Entwicklungsgeschichte des Meerschweinchens. Abhandl.
d. k6n. preuss. Akad. d. Wiss., Berlin.
Rum, G. 1883. Beitréige zur Kenntniss der Reifungserscheinungen und Befruchtungsvorgange am
Salugethierei. Arch. f. mikr. Anat., 2.7.: 7.33-7.70.
ROBINSON, ARTHUR. 1918. The formation, rupture,
and closure of ovarian follicles in ferrets and
ferret-polecat hybrids, and some associated
phenomena. Trans. Roy. Soc. of Edinburgh, 57.:
303-367..
RUBASCI-IKIN, W. 1905. Ueber die Reifungs- und
Befruchtungsprozesse des Meerschweincheneies.
Anat. Hefte, 19(3): 507-553.
SAKURAI, TSUNEJIRO. 1906. Normentafel zur Entwicklungsgeschichte des Rehes (Cervus capreolus). F. Keibel, ed., Jena, 100 pp. (Based on
Keibel‘s material.)
SALVIN-MOORE, J. E., and F. Tozan. 1908. On the
maturation of the ovum in the guinea pig. Proc.
Roy. Soc., 80B: 7.85-7.87. (Brief note.)
SCHMALZ, R. 1911. “Die Geschlechtsorgane" in
Ellenberger’s Handbuch der vergl. Anat. der
387
Haustiere. Vol. 7., p. 510. (Quotes sizes of
eggs of cow, pig, and other mammals).
SCEMALZ, R. 197.1. Das Geschlechtslcben der Haussaugetiere. Berlin.
SELENKA, E. 1887. Studien iiber die Entwicklungs
geschichte der Thiere. 4. Heft. Das Opossum.
Wiesbaden.
1903. Studien, etc. Menschenaffen, etc.
5. Zur vergleichenden Keimesgeschichte der
Primaten. pp. 37.9—373. (p. 331: “Eifurchung
des Macacus nemestrinus;" a 4-celled egg.)
SEMON, R. 1894. Zur Entwicklungsgeschichte der
Monotremen. Zool. Forschungsreisen in
Australien und malayischem Archipel. Jena.
Bd. II, Lief. 1.
SMITH, SEPTIMA C. 197.5. Degenerative changes in
the unfertilized uterine eggs of the opossum,
with remarks on the so-called parthenogenesis
in mammals. Am. Jour. Anat., 35(1): 81104.
Sosorm, J. 1893. Mitteilungen iiber die Vorgiinge
bei der Reifung, Befruchtung und erste Furchung
des Eies der Maus. Verh. Anat. Gesell. Gottingen, pp. 111—17.0.
1894. Die Befruchtung des Eies der Maus.
Anat. Anz. 9: 2.2.0-7.2.3 (Prelim. note.)
1895. Die Befruchtung und Furchung des
Eies der Maus. Arch. f. mikr. Anat., 45: 15-97..
(The classic on this subject.)
1895. Die Reifung und Befruchtung des
Wirbeltiereies. Ergebn. d. Anat. u. Entwick1.
Gesch., 5: 507-561. (Rcview.) See also con
tinuation, 1906, ibidem, 6: 493-593. (173 titles.)
1907. Die Bildung der Richtungskorper
bei der Maus. Anat. Hefte, 35: 493-557.. (Heft
106.)
1908. Ueber die Richtungsteilungen des
Siiugetiereies, speziell fiber die Zahl der Rich
tungskérper. Verhndl. d. phys.-med. Gesellsch.
Wiirzburg, 39: 7.41-7.61.
1901. Die erste Entwicklung des Méiuseeies
nach der Furchung. Anat. Anz., Vol. 19,
Erganzungsheft, pp. 4-11.
197.4. Beitriige zur Furchung des Eies der
Séiugetierc mit besondere Beriicksichtigung der
Frage der Determination der Furchung. I. Die
Furchung des Eies der Maus (Mus musculus).
Zeitschr. f. Anat. u. Entwicl<l., 77.: 94-116.
$030114, J., und G. BURCKHARD. 1911. Reifung
und Befruchtung des Eies der weissen Ratte.
Anat. Hefte, 47.: 433-498.
Span, Gnu F. 1883. Beitrag zur Entwicklungsgeschichte der friiheren Stadien des Meerschweinchens bis zur Vollendung der Keimblase. Archiv
f. Anat. u. Physiol., Anat. Abth., pp. 44-60.
Sprmcmz, W. B. 1884. The eggs of Monotremes.
Nature, 31: 132..
TAFANI, A. 1889. I primi momenti dello sviluppo
dei mammiferi. Rendiconti d. R. Accad. dei
Lincei (C1. di Sci. mor., stor., e filol.), 5(1):
119-125. (No data on sizes.)
1889. La fécondation et la segmentation
étudiées dans les oeufs des rats. Arch. Italiennes
de Biol., 11: 112.. (Unillustrated general report.)
1889. La fecondazione e la segmentazione
studiate nelle uova dei Topi. Accad. med.
fisic., fiorent. (Not available to the present
writer.)
VAN BENEDEN, E. 1870. Recherches sur la composition et la significance de 1'oeuf. Mém. de
l’Acad. roy. de Belgique, Vol. 34.
1875. La maturation de 1'oeuf, 1aféconda
tion et les premieres phases du développement
embryonaire des Mammiferes d'apres les recherches faites sur la Lapin. Bull. Acad. Roy. des
Sci., des Le-ttres et des Beaux-arts de Belgique,
40: 686.
1880. Recherches sur l'embryologie des
Mammiféres. La formation des feuillets chez
le Lapin. Arch. de Biol., 1: 137-2.2.4. (Con
tains frequently copied figures of the rabbit
vesicle.)
1899. Recherches sur les premiers stades
du développement du Murin (Vespertilio muti
nus). Anat. Anz., 16: 307.
1911. De la segmentation, de la formation
de la cavité blastodermique et de l'embryon
didermique chez le Murin. Arch. de Biol., 2.6:
1-64. (This paper, and the succeeding one on
later stages, printed posthumously by Brachet,
ibidmz, 1912., 2.7: 191-402., is also a fertile source
of illustrations for writers of texts on mammalian
embryology.)
VAN BENEDEN, E., and C11. JuL1N. 1880. Observations sur la maturation, la fécondation et la
segmentation de l'oeuf chez les Cheiropteres.
Arch. de Biol., 1: 551-572..
VAN DER Snucnr, O. 1904. La structure dc l'oeuf
des Mammiferes. Premiere partie: L'oocyte au
THE QUARTERLY REVIEW OF BIOLOGY
stade de l'accroissement.
1—102..
VAN DER STRICHT, O. 1905. La structure, etc.
Deuxieme partie. Structure de l'oeuf de la femme.
Bull. de l'Acad. Roy. de Med. de Belgique,
Séance Juin 2.4, 1905, pp. 1-35.
1909. La structure, etc. Troisiéme partie.
L’oocyte a la fin du stade d'accroissement, au
stade de la maturation, au stade de la fécondation
et au début de la segmentation (Chauve-souri,
Vesperugo noctula). Mém. Acad. Roy. de
Belgique, Sér. II, Vol. II, pp. 1-176.
192.3. Etude comparée des ovules des Mammiféres aux ditférentes périodes de l'ovogen<‘:se
d'apres les travaux du Laboratoire d'Histologie
et d'Embryologie de l’Université de Gand. Arch.
de Biol., 33: 129-300. 171 figures.
VAN’ DER S1'1uc11'r, R. 1911. Vitellogenése dans
l'ovule du chatte. Arch. de Biol., 2.6: 365-481.
(Prize essay, Univ. of Gand, 1909.)
WAGNER, Runomnn. 1836. Prodromus historiae
generationis hominis atque animalium. Leipzig.
(3 tables of measurements of invertebrate and
vertebrate eggs, incl.: sheep, 148; rabbit, 148;
cat, 150, 110, 2.2.0; rat, 73; bat, 92. micra.)
WALDEYER, W. Eierstock und Ei. Leipzig. 1870.
“Die Geschlechtszellen" in Hertwig's
Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbelthiere. Vol 1,
Part 1, pp. 86-476. (P. 32.3: mammalian egg,
100-2.00 micra; hedgehog and mouse, 60; guinea
pig, 90; dog and rabbit, 180.)
WEBER, M. 1904. Die Saugetiere. Jena.
WEIL, C. 1873. Beitriige zur Kenntniss der Befruchtung und Entwicklung des Kanincheneies.
Stricker's (Wiener) med. J ahrbficher.
WESTER,  192.1. Eierstock und Ei. Befruchtung
und Unfruchtbarkeit bei den Haustieren.
Berlin.
WILSON, J. T., and J. P. HILL. 1907. Observations
on the development of Ornithorhynchus. Phil.
Trans. Roy. Soc., 199B: 31-108.
Zscnoxmz, E. 1900. Die Unfruchtbarkeit des
Rindes, ihre Ursachen und Bekimpfung. Zfirich.
Arch. de Biol., 2.1:

Revision as of 12:35, 9 February 2017

Embryology - 20 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Hartman CG. How Large is the Mammalian Egg?: A Review. (1929) Quart. Rev. Biol., 4(3): 373-388.

Online Editor 
Mark Hill.jpg
This historic 1929 paper by Hartman described the differences in oocyte sizes between different species.



Modern Notes

Oocyte

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

How Large is the Mammalian Egg? A Review

By Carl G. Hartman

Department of Embryology, Carnegie Institution of Washington, Betltimare, Mn.

If one sketch the outline of a hen's egg so as to fill a page of this Journal as nearly as possible, the egg of the oviparous Australian mammal Ornitiiorbynclnm, drawn to the same scale, would be represented by the natural size of the hen's egg, the entire opossum egg with its albumen, by a cross-section of the lead in a pencil, the human egg by a period in average sized type.

Within the phylum Vertebrate; the differences between the smallest eggs, those of mammals, and the largest is even greater. Thus the eggs of certain “man-eating" sharks (Lamnids) are as much as 2.2.0 mm. in diameter. The egg shell of the now exterminated Apyorni: measured 350 mm. or over a foot in its longest diameter. The ostrich egg is -150 mm. in length and has a capacity of 1.2 liters, or over aquart.


In the evolution of mammals, the Monotremes (Omitlaorbyncbn: and Ecbidnn) form an interesting link, for they possess in their hairy covering and milk secreting glands the chief distinguishing class characteristics of mammals. Yet they “lay" large yolk-laden eggs from which the young emerge after a short incubation outside the female's body. From the 15-millimeter egg of Ornitborlqynclms and the 15-millimeter egg of Ecbidnet there is a sudden drop to the typical mammalian egg, which measures about one-tenth of a millimeter. It is true that the marsupial eggs show some transitional characters, as for example, the large albumen layer, the shell membrane, and a somewhat richer supply of yolk, as in Dnsyuru: (Hill). But throughout the Eat/aeriez, the mammals above the marsupials, the egg is very uniform, with not much over a twoto-one variation in size (table 8), which holds from rat to man, from bat to horse, from mouse to elephant and whale. The size of the animal bears no relation to -the size of the egg.


The comparison between the large yolkladen eggs on the one hand and the human egg or the eggs of most mammals on the other is not fair to the latter group, for these represent only the yolk or "vitellus" of larger eggs. The total diameter of the hen's egg, for example, is due largely to the albumen laid down in the oviduct around the vitellus. The human egg has no such envelope, and this is true of all mammals with the exception of the marsupials and the Lagomorpha (hares and rabbits). Thus the egg of our only marsupial, the opossum, has a thick albumen layer enclosed in a thin shell membrane; the rabbit egg lacks the shell membrane, while all other mammalian eggs have only a highly transparent limiting membrane, or “zona pellucida," which they receive in the ovary before their discharge into the oviduct. The opossum egg, with its opaque white ovum proper in the center of a transparent, hardly visible albumen sphere, looks, in reflected light, much like a grain of sago not quite cooked through—a hyaline sphere with a white spherule in the center.

This comparison between the egg of fowl and that of mammals must be controlled in another way. The yolk or vitellus of the hen's egg is so laden with fat and protein pabulum for the developing embryo that the egg nucleus, with its associated tiny mass of protoplasm, which alone will make the chick embryo, becomes all but lost on the surface of the yolk. But that speck of protoplasm corresponds to the entire Eutherian egg. The reduction in size has, of course, been made possible by the parasitic habit assumed by the mammalian fetus through implantation in the maternal tissues.


In order to visualize for himself the actual size of the mammalian egg, the reader may follow the suggestion which the Berlin anatomist Waldeyer was wont to give his students. Spread out, said he, a sample of sand on a sheet of paper, brush off the easily visible grains and pick out the smallest grain, which it is just possible to see with the naked eye—that speck is of the order of magnitude of the mammalian egg.


THE DISCOVERY OF THE MAMMALIAN EGG

In view of the small size of the mammalian egg, it is not at all surprising that it so long escaped detection. It was not until 182.7 that von Baer announced the discovery of the real mammalian and human eggs. From the time of de Graaf (1673) to that of von Baer the large vesicular follicle of the ovary was regarded as the egg. We now know that the ovarian follicles that bear de Graaf’s name do not constitute the egg but contain the egg. The clear, limpid “graafian” follicles in the ovary of the rabbit, before their dehiscence, do greatly resemble eggs of about eight days’ development, but how such large eggs were to pass through the narrow lumen of the oviduct did not, it seems, concern many investigators. I read, however, in Ritchie's interesting book, Contribution; to Assist the Study of Ovarian Physiology and Pathology (1865) that Morgagni, in his Aoloermria Anatomim Omnia (1741) made the following reflections: “How much more likely is the conjecture that they (the ovarian follicles) are glands secreting fluid for the purpose of keeping the ovum safe, and helping it to escape when the proper time arrives." The error referred to above was a costly one and doubtless retarded progress in the study of embryology during the century preceding von Baer. It is interesting to note that Jones (1837) varied the error of deGraaf by confusing the gelatinous envelope of the rabbit egg with the liquor folliculi. However, the century following the “Father of Embryology,” the nineteenth, did not produce a large array of investigators who occupied themselves with the study of the early stages of the mammalian egg. Without a doubt the outstanding figure was Bischoff, who published, in the forties and following decades, his classical studies on the rabbit, the dog, the guinea-pig, and other domestic animals, as also the deer. These studies have stood the test of time; Bischoff's measurements on the living eggs were the most extensive up to a very recent date.


My calculations of Bischoff’s data are uniformly too high. I have followed Keibel’s equivalent of 3 Prussian Inches (R2,) the equal of 80 mm. This approximates our equivalent of 2.5 mm. for one inch. Thus the average given for the dog egg (1845, page 7) is o.oo68 to o.oo7o P.Z. or 1/13 to 1/12. P.L. or 16 to 19/ I00 mm. These dimensions in Iuicra, according to my calculations would be: 181 to 186, 170 to 184, 166 to 190. It seems that Bischoff attempted exact’ness only in terms of decimal fractions of the P.Z. (preussischer Zoll.). Since his measurements run pretty uniform though high it is probable that the unit of measurement he used was smaller than he thought by a small fraction.


Sobotta (1895) studied 1459 mouse eggs in maturation and early cleavage, and Long and Mark (1911) I000 mouse eggs in maturation and fertilization. These constitute the most extensive studies of a single species and on a limited phase of development, but they do not include a single measurement on the living egg. As will be pointed out herein, it is the living egg alone that affords the true

TABLE I

Frem Long and Marie (1911), rbowing change: in size of tin: mam: egg during maturation and fertilization, bared on egg: fixed in Jim

AVERmm— D‘;;’:_ STAGE BEEéIG0sF BER mom Ovarian: Germinal vesicle . . . . . . . . . . . . . . . . . . 109 65 5 Beginning of first maturation division . . . . . . . . . . . . . . . . . . . . . . . . . . 53 62.5 first maturation division . . . . . . . . . . . 7.11 58.0 Tubal.Second spindle . . . . . . . . . . . . . . . . . . . 507 55 .6

Second maturation division . . . . . . . . . 36 53 .6

Pronuclei . . . . . . . . . . . . . . . . . . . . . . . . . 17.3 54.0

Eggs in oviduct 16% hours . . . . . . . . . 5o 53 .3

Eggs in oviduct 7.9 hours . . . . . . . . . . . 50 56 .5

picture of the egg as a whole and it is only recently that such studies have gotten under Way. This fact does not, however, minimize the fundamental processes in the behavior of the egg which only microscopic preparations can disclose; for stained preparations have taught us about the significant behavior of the chromatin, the chief bearer of hereditary characters.

SHRINKAGE OF THE TUBAL EGG

Can we state in definite figures, then, with reasonable accuracy, the dimensions of the ovum in each species of mammal thus far studied? Before answering this question We must further define it. In the first place, We must specify the stage of development considered, for manifestly, sooner or later, the egg begins to grow. In this discussion We shall limit ourselves to the one-celled or undivided stage, or at least to the stage of early cleavage. These alone approximate the freshly discharged egg. Now there is considerable evidence in the literature that the nuclear changes of first maturation division in the ovary, the second division, and fertilization after ovulation involve also changes in the size of the egg, even entirely aside

TABLE 2.

Size: (in micra) of ovarian and tubal egg: calculated by the prerent writer from tbe atla: of van der Striebt

(1923) amlfram /air ltat paper (1909)

OVARIAN TUBAL

“““‘“‘ aces mas Man . . . . . . . . . . . . . . . . . . . . . . . . . 141)(1I3

Dog . . . . . . . . . . . . . . . . . . . . . . . . .. IIIX97. xo2.)(87

Cat . . . . . . . . . . . . . . . . . . . . . . . . .. 95x84 81 X77.

Guinea pig . . . . . . . . . . . . . . . . . . . 77x63 63x58

Bat (197.3) . . . . . . . . . . . . . . . . . . .. 95 X78 7oX65

Bat (1909) . . . . . . . . . . . . . . . . . . .. 9o><69 66X58

Mouse . . . . . . . . . . . . . . . . . . . . . .. 8oX62. 53x53

from the small mass of cytoplasm and nuclear material extruded with the polar bodies. Long and Mark state that a maximal size of the egg is reached at the end of the so-called period of growth, while the egg nucleus is in the condition of a vesicle. From this time to fertilization there is a progressive slight shrinkage, after which the egg increases in size with its sojourn in the tube. Long and Mark's figures are quoted in Table I because they are unique in the number of eggs measured and the care with which the work was done.

Lams and Doorme (1907) were probably the first to call attention to this phenomenon, which 0. Van der Stricht,


their teacher, believed to be quite general for mammalian eggs. This author also believed that the low- point varies in different mammals, but in view of the condition of the material on which he made his measurements We may well doubt that so nice a point could have been determined‘ by him. That the ovarian egg is generally reported to be larger than the tubal egg there is no doubt, as one can readily see by a study of the literature. Sobotta in 1905 set down the mouse egg at 59 micra for both the ovarian and the tubal stages, but in a later paper he granted 65 to 70 micra to the ovarian, 60 to the tubal ovum. From Van der Stricht's extensive data I have calculated Table 7., from the standpoint of the present comparison. This author's paper of 197.3 constitutes a veritable atlas of the early history of the mammalian egg, based on the most extensive and varied series in the world.


A similar excess in size of ovarian over tubal ova I have reported for the opossum, where, however, the former were measured in situ, the latter after being washed from the tube and studied singly. Other data in the literature were mostly based on material fixed and sectioned, usually in situ. The measurements are thus open to objection; both ovarian and tubal eggs should be studied alive in the same medium. This I have done in the case of the rabbit. Ovarian eggs removed from the right ovary, excised surgically seven hours post coitum, measured on the average 17.7. x 119 micra. Nineteen hours later two eggs Were taken from the left fallopian tube; they were in the two-celled’ stage when removed, but divided again and were four-celled before they could be photographed. They measured 12.4 X 17.4 micra, a little larger than the ovarian eggs. Dr. W. H. Lewis killed a rabbit ten hours post coitum, when some of the eggshad been shed while others were still retained in the follicles. One ovarian egg measured 119, the other 133 micra; the average for tubal ova was 17.4 micra. The progressive changes in size of the mammalian egg, therefore, await more extensive study. This Will be made by better methods in connection with other studies on the egg.

SHRINKAGE DUE TO fiXATION

The size changes incident to- the vital activities of the developing egg, as set forth above, become insignificant when compared with the shrinkage caused by fixing agents and the after-treatment used in making microscopic preparations. Hence we must know under what conditions the eggs are measured. Since the introduction, about 1870, of the paraffin method of section cutting, by which an egg one—tenth of a millimeter may readily be cut into ten or more sections of convenient thickness, the tendency to use the method on all occasions has been overdone, for it has been substituted for the older and, for some purposes, better method of studying the object in the living state. Refined technique has often been made an end in itself, rather than an aid. fixing fluids, too, cause a variable amount of shrinkage, those containing osmic acid the least of all. The rate at which the reagents are changed is another important factor. With the most careful treatment the Writer kept the shrinkage down, for the most part, to about 15 per cent; more speed in handling the material would certainly have resulted at times in a 30 per cent shrinkage, which is not unusual in much of the work published on the mammalian egg. The study of the mouse egg might be cited in this connection. Sobotta (1905) gives 59 micra for the average mouse egg fixed in either ovary or tube, but in a later paper states that 65 to 70 micra is nearer the truth for the ovarian egg. Kirkham (1907), basing his measurements on the living egg, gives 80 micra for the ovarian, 73 to 78 for the tubal egg. The writer recently photographed five ovarian eggs of a field mouse (sp. 2‘) and these averaged 95 micra in diameter. It is therefore evident (and on this point there is no disagreement among the little data. The proneness of authors to let the reader make the calculations for himself is illustrated by Van der Stricht's invitation (192.3, page 2.79): “I shall not speak further about the exact dimensions of the eggs [he had not yet given any ‘exact dimensions’]—it is easy to calculate them from the drawings.” This invitation I have. accepted, as did Corner

TABLE 3

Measurment: made from photograph: of mammalian egg: taken in the living state. Negative: on file at the Carnegie Laboratory of Embryology, Baltimore. Diameter of o1/am proper (oitellm) or inner diameter of


zona. Dimem-ion: in miera ANIMAL STAGE "U32: 01' AVERAGE SIZE INVESTIGATOR Rabbit 1-4-celled 6 12.6 Gregory Early cleavage 2.2. 12.4 Lewis Ovarian 1 119 Lewis Ovarian 1 133 Lewis Ovarian 5 12.o Hartman 2.—4—celled 2. 12.4 Hartman Mouse Ovarian 5 95 Hartman Dog 1-celled tubal 3 12.0 Hartman Pig 1-celled tubal 4 111 Heuser and Streetet Cleavage 8 12.1 Heuser and Streeter Opossum 56 1-celled tubal 2. 145 Heuser and Hartman 313 1-celled tubal 2. 12.6 x 1o6 Heuser and Hartman 351 1-celled tubal 11 108 x 1oo Heuser and Hartman 336, 337 Cleavage 6 151 x 140 Heuser and Hartman 842. Early tubal 7 157 x 152. Hartman 833 1-celled tubal 2. 173 Hartman 766 Uterine 1 141 Hartman

Various litters of Uterine 100 155 Hartman opossum

authorities) that the fixed egg is no criterion of normal size of the living, functioning egg.

A further complication is encountered if one attempts to calculate the size of eggs from authors’ illustrations where the magnifications are indicated. Articles that fail to indicate magnifications are, of course, of no avail for the purpose of this study (e.g., Rein, Melissinos). Were we to refrain entirely, however, from making calculations from the illustrations in the literature, there would remain jolly


(CoWdry’s "Special Cytology,” volume II, page 1112.). The results must, however, fall somewhat short of the true diameter of even the fixed egg, for sections are selected that pass through features of interest, namely the egg nucleus, division spindle, and polar bodies. If these landmarks happen to fall in the middle section of the series the section fairly represents the act ual size of the egg; if, on the other hand, the section is a tangential one, the egg is actually larger than the section shows it to be. It is therefore apparent


TABLE 4


Egg: (vitelle: only, or inner diameter of (ma) meamred in prepared section: affixed ovaries. Size: in micra

ANDIAL AUTHORITY IMAXIMUM MINIMUM AVERAGE REMARKS

Dasyurus Hill, 1911 7.70 x 7.60 7.80 x 17.6 7.40 Stated

Didelpbis aurita Hill, 1918 — — 147. x 17.9 Stated

Didelplvix 7/irg. Hartman, 1919 185 x 150 — — Stated

Armadillo Newman, 1917. —-— —— 53 Calculated

Mouse Sobotta, 1895 —— — 59 Stated

{ 2: :2 : §§Z‘E:2ff2f;.““°°‘

Gerlaeh, 1906 71 x 55 53 63 x 54 Calculated (few eggs) Kirkham, 1907 —-— — 71 x 64 Calculated (7. eggs) Lams and Doormc I907 —- — 68 Osmic fix., stated

’ — — 67. Non-os. fix., stated

Long and Mark, 1911 77 50 59 Cf. Table 1 Van der Stricht, 197.3 93 x 64 67 x 60 80 x 67. Cf. Table 7. Kremer, 197.4 75 x 75 65 x 55 70 x 70 Calculated

Rat Kirkham and Burr, 1913 77 x 77. 65 x 55 69 x 63 Calculated Sobotta and Burckhard, 65 6o — Stated

1910

Kremer, 197.4 63 x 55 45 x 45 53 x 47 Calculated

Guinea-pig Rein, 1883 —— — 84 From Lams, 1913 Lams and Doormc I907 —-— -— { 83 Osmic flx., stated

’ — —— 79 Non-osmic fix., stated

was 91 2:8  75  §:::::;d.f:;:,fg“°"

Lams I913 __ _ { 80 fleming flx.; calculated ’ 70 N on-osmic fix.; calcu. lated

0. Van der Stricht, 197.3 87 x 60 67 x 60 77 x 63 Cf. Table 7.

Dog 0. Van der Stricht, 197.3 17.3 x 87 95 x 80 111 x 97. Cf. Table 7.

Cat R. Van der Stricht, 1911 180 x 98 111 x 90 ~ 7. eggs; calc. Longley, 1911 97. 79 x 74 — Calculated 0. Van der Stricht, 197.3 100 x 90 87 x 81 95 x 84 Calculated

Ferret Robinson, 1918 133 x 116 98 110 Calculated

Horse Hartman —— — 135 Carnegie collection (in

toto prep.) Bat Van Beneden and Julin, 113 90 104 Calculated 1880

0. Van der Stricht, 1969 110 x 105 50 x 44 95 x 78 Many eggs; calculated 0. Van der Stricht, 197.3 97 x 7o 81 x 67 90 x 68 3 eggs; calculated

Human Nagel, 1888 199 x 194 170 x 165 — 7. eggs (with zona) Waldeyer -— — 130 1 egg Bumm (Gynecology) —— — 7.00 Stated (with zona) Késllikcr (Grundriss) —-— — 7.oo Stated (with zona) 0. Van der Stricht, 1905 157 17.0 x 110 140 x 17.1 Calculated from 13 figs. 0. Van der Stricht, 197.3 179 x 103 107 x 97. 141 x 103 Calculated 4 eggs Hartman —-— — 17.0 x 110 1 egg (Carnegie)

Monkey

(M. mmutrinus) Selenka, 1903 —— — Ca. 40 Stated (M. rbmu) Hartman 108 x 100 105 x 90 110 x 93 Carnegie Coll. Gibbon Hartman —-— 87 x 80 — 1 egg (Carnegie Coll.) Gorilla Hartman —— — 90 x 87 1 egg (Carnegie C011.) 378


TABLE 5


Tubal am medied in section: after fixation, either in tine ar after firxt being remwed from the tube. .1‘ tarred* in the latter case. Size in micro (vitellu: or true ovum only)



ANIMAL AUTHORITY mxunm mnmuu AVERAGE nmmgxs Didelphis (opossum) *Hill, 1918 (D. aurita) 170 x 150 117. x 100 17.6 x 117 Cleavage; calculated

  • Hartman, 1919 (D. 1/irg.) 148 x 17.5 107. x 76 17.7. x 104 Stated

Hedgehog *fischer, A. 46 x 40 —— — One 3-celled egg; calculated Baumeister, I913 —— —— 69 x 54 One egg; calculated Mole Heape, 1886 159 C?) 17.0 17.5 Calculated Mouse Sobotta, 1895, 1898 — — 59 to 60 Stated — —— 6 O ' . Lams and Dootmc’ 190 7 { — 5: Nztlifislildcid 1sit:.t;c;lI:ated Gerlach, 1906 68 x 55 48 x 41 60 x 48 Many eggs Anikiew, 1908 60 x 58 — — Calculated Long and Mark, 1911 —— — 55 Cf. Table 1 Kat Sobotta and Burckhard, 60 55 — Stated and calculated 1910 Kirkham and Burt, 1913 67 x 63 55 x 53 61 x 57 Calculated Huber, 1915 70 x 67. Few eggs . O . ._ Guinea-pig Lams and Doormc, 1907 { N:)1:11:sf!'1n:cic, stand 90 x 74 77. x 58 87. x 67 Cale. from figures X Rubaschkin, 1905 530 60 55 — Stated Lams, 1913 60 45 55 Calculated Rabbit *Assheton, 1894 145 130 133 Cale. 7 figs. X 165

  • Nihoul, 197.6 96 x 97. 86 x 8o 91 x 83 Calc. Benda fix.

Dog *0. Van der Stricht, 197.3 117 x 103 83 x 70 107. x 87 Calculated; cf. Table 7. Cat R. Van der Stticht, 1911 114 x 100 89 x 75 105 x 93 Calculated Bonnet, 1897 — -— 100 1 egg ca1c.; fleming fix. Bonnet (text), 197.7. — —— 111 x 106 1 egg calc.

  • Longley, 1911 — — 99 x 81 Calculated

Hill and Tribe, 197.4 90 x 80 69 x 57 87. x 7o Stated Sheep *Assheton, 1898 17.3 105 114 Calculated Pig *Assheton, 1898 116 81 100 x 95 Calculated Deer Keibel, 1901 115 111 x 106 113 x 108 Calculated Bat Van det Stricht, 1909 83 x 73 60 70 x 65 "Selected as typical" Van det Stricht, 197.3 97 x 70 54 x 53 73 x 67. Cf. Table 7. Hartman 87 x 73 Carnegie Coll.; 1 egg Tatsius Hubrecht, 1907. 82. x 70 77. 77 x 71 Calculated Monkey (M. neme:- Selenka, 1903 — — 40 4-celled

trimet)


that measurements based on even the best fixed material, especially th-at fixed in situ, fall short of the actual size of the living egg. This is entirely aside from the irregular shapes which the eggs assume when fixed in situ. I have seldom seen a nicely rounded egg fixed and prepared in the fallopian tube of any animal and I presume that Sobotta had the same experience. Nevertheless this author, by “artistic license," pictures his specimens large collection of opossum eggs at the University of Texas. Many batches of eggs and embryos were at that time photographed in physiological salt solution immediately after removal from the animal. With the assistance of Dr. Heuser, at the Carnegie Laboratory of Embryology, many remarkable photographs of the living rabbit egg in cleavage and germ-layer formation have been secured by Dr. P. W. Gregory and others,


TABLE 6 Size: of egg: removed from ovary and meamred in living state. Size: in micm. Vitellu: (Sea alm Table 3)

ANIMAL AUTHORITY MAXIMUM MINIMUM AVERAGE REMARKS Ornithorhynchus Gatenby and Hill, 192.4 4.4 x 4.16 — — 4400 micra mm. Ornithorhynchus Caldwell, 1887 2.5 mm. —- — 2.5oo micra Echidna Caldwell, 1887 3 .o mm. — — 3ooo micra Mouse Kirkham, 1907 — — 8o Guinea-pig Bischoff, 1852. — — 75 Calc. from figs. X 350 Reichert, 1861 —- — 87 Calc. from figs. X 32.0 Rein, 18_83 — — 65 Calc. from 1 fig. Rabbit Bischoff, 1842. 182. 142. 161 Stated (1 P.Z. = 2.5 mm.) Dog Bischoif, 1845 190 166 — Stated Bischoff, 1844 166 160 — Stated (from polyov. foll.) Cat Krause, 1838 170 no 144 Six eggs; calculated Longley, 1911 130 105 — Stated Goat Krause, 1838 185 17.0 — 3 eggs; calculated Pig Bischoff, 1844 140 111 — Several eggs Lowery, 1911 157 — — "Largest of many" Bat Van Beneden and Julin, 1880 — — 105 1 egg Macaque Krause, 1838 140 92. 118 3 eggs

in what he considered their normal rounded shape. His drawings are the illustrations of maturation, fertilization and cleavage of the mammalian egg most used in the embryological textbooks of all countries.


THE STUDY OF THE LIVING EGG

What were perhaps the beginnings of a new method in the study of the mammalian egg were made in 1918 by Dr. C. H. Heuser, who, with the writer, under the auspices of the Wistar Institute, made a and negatives of the early stages of living eggs of other mammals are rapidly accumulating. Indeed, at this laboratory Dr. W. H. Lewis is doing pioneer work in the cinematography of the developing rabbit egg, as he is combining tissue culture with motion picture technique. He has thus far succeeded in keeping the egg alive in rabbit blood plasma for over a week and photographing its normal development for over four days—that is, through cleavage and the formation of the seg mentation cavity. The observer may see the entire process before his eyes in a few minutes and much may be learned which would absolutely escape notice by other methods.


taken in Texas and of the rabbit egg after photographs taken by Dr. Gregory and Dr. Lewis.

This section on the measurement of the

TABLE 7 Tubal um mulled in the living state. Size: in micra. Meamrement: of ovum proper or vitellu: only, or in a few carer,

chiefly early cleavage rtagee, inner diameter of game.

See who Table 3


ANIMAL AUTHORITY MAXIMUM mmnnm AVERAGE REMARKS Platypus Burrell, 197.7 3.0 mm. — — Whole egg 17 x 14 mm. Echidna Simon, 1894 — —— —- Whole egg 16 x 13 mm. Dasyurus Hill, 1911 300 x 7.90 —— 7.50 x 7.40 Stated Opossum Hartman, 1919 157 x 157. 108 x 100 130 x 17.3 Stated Hedgehog Keibel, 1888 17.0 — no (In toto in OsO4); stated Mouse Kirkham, 1907 78 73 — Stated Rat Bischoff, 1844 — -—— 100 One egg; stated Kirkham and Burr, 1913 — — 79 Stated Guinea-pig Bischofl’, 1857. 106 91 — Stated (3 P.Z. = 80 mm.) Bischoff, 1857. 74 70 77. Calc. from figs. X 350 Bischolf, 1857. — — 75 After Lams Reichert, 1861 — —- 87 After Lams Hensen, 1876 87. 65 75 Calc. from sev. eggs Rabbit Bischoff, 1847. 180 139 160 Stated. Costl, 1834-1849 — — 17.0 Calculated Hensen, 1876 -— — 1o3 x 93 Calc., 1 fig. Gréwsdew, 1896 144 17.0 133 Calc., sev. figs. Dog v. Baer, 187.7 — — 144 "1/15 of a line" Bischoff, 1845 174 17.5 145 "3 P.Z. = 80 mm." Hartman — — 17.0 Carnegie Coll. Cat Longley, 1911 Cf. Table 3 Hill and Tribe, 197.4 153 x 136 119 x 110 130 x 119 6 eggs in osmic fix. Sheep Bischoff, 1844 —~ -—— 140 1 egg; stated Deer Bischoff, 1854 115 Stated Pig Corner and Amsbaugh,1917 145 135 140 14 eggs, 3 litters Heuser and Streeter, 197.8 131 116 17.1 10 eggs, 3 litters Bats Cspp.) Van Beneden, 1911 95 86 91 7. eggs (118, 108 with zona) Monkey Corner, 197.3 86 83 — 7. eggs, degenerating Allen, 197.7 104 87 —-— 7. eggs, degen. Allen, 192.8 104 1 egg, degen. Hartman - — 107 1 egg, degen. Human Allen, et al., 197.8 184 117 137. With zona

Photography thus applied to embryology may therefore be expected to yield valuable results. Certainly, from negatives the size of the eggs may be calculated at one’s leisure. In Table 3 I have given a number of measurements, chiefly of the opossum egg after photographs

living egg must not be closed without mention of an event of the greatest significance; namely, the discovery of the first human tubal ovum by Edgar Allen and associated surgeons (Dr. Pratt of

Detroit and Drs. Newell and Bland of St. Louis). Seven eggs were recovered from


TABLE 8

Interpretive table, giving tbe reviewer’: estimate of tbe true average size of tbe egg of various species of mammal thus far studied. Studies on tbe living egg are considered tbe more authoritative and due correction is made for data based on fixed eggs. Dimension of vitellus only.

fen/einson (1915) probably give: size of entire egg

MOST

mm .::::;B;:. ”3«‘>‘»‘?’s"‘ IN uxcxm TABLE

Monotrcmata

Platypus . . . . . . . . . . . . . . . . . . . 1.5 mm.

Echidna . . . . . . . . . . . . . . . . . . . 3 .0 mm. Marsupialia

Dasyurus . . . . . . . . . . . . . . . . . . 2.40 2.80

Didelphis . . . . . . . . . . . . . . . . . . 140-160 130 Edentata

Armadillo . . . . . . . . . . . . . . . . . 80 Cetacea

Whales . . . . . . . . . . . . . . . . . . . . 140 Insectivora

Mole (Talpa) . . . . . . . . . . . . . . 12.5 90

Hedgehog (Erinaceus) . . . . . . 100 60 Rodentia

Mouse . . . . . . . . . . . . . . . . . . . . 70-75 60

Rat . . . . . . . . . . . . . . . . . . . . . . . 70-75

Guinea pig . . . . . . . . . . . . . . . . 75-85 80 Lagomorpha

Rabbit . . . . . . . . . . . . . . . . . . . . 120-130 150 Carnivora

Dog . . . . . . . . . . . . . . . . . . . . . . . 135-145 180

Cat . . . . . . . . . . . . . . . . . . . . . . . 17.0-130

Ferret . . . . . . . . . . . . . . . . . . . . . 17.0 Ungulata

Horse . . . . . . . . . . . . . . . . . . . . . 13;

Sheep . . . . . . . . . . . . . . . . . . . . . 17.0 130

Goat . . , . . . . . . . . . . . . . . . . . . . 140

fig . . . . . . . . . . . . . . . . . . . . . . . 17.0-14o Cheiroptera

Bat . . . . . . . . . . . . . . . . . . . . . . . 95-105 Lemurs

Tarsius . . . . . . . . . . . . . . . . . . . . 90 Primates

Gibbon . . . . . . . . . . . . . . . . . . . . 1 10-110

M. rbesus . . . . . . . . . . . . . . . . . . 110-17.0

Gorilla . . . . . . . . . . . . . . . . . . . . 130-140

Man . . . . . . . . . . . . . . . . . . . . . . 130-140

six women. The measurements were made on the fresh eggs and are given in Table 7. Previously Corner (197.3) and Allen (197.7) had recovered eggs from the monkey. These were also measured before fixation (Table 7). The egg of Macacus nemestrinns, in the four-celled stage, was studied by Selenka (1903) in the fixed tube and measured in the shrunken state only 40 micra. These cases mark the beginning of the study‘ of the earliest tubal ova in Primates.

THE SIZE OF THE MAMMALIAN EGG

We now return to the original question, How large is the mammalian egg? The reflections set down in this review force the conclusion that for no species of mammal is there agreement on measurements of the egg. Those reported have a range far in excess of variations in the normal living egg, great as these variations undoubtedly are. Perhaps the smallest and the largest of a given species, that is, the extremes in size range of living eggs, are not viable. But We know nothing about this problem; it is one that only tissue—culture methods can solve. The reviewer has therefore thought it desirable to bring together the data contained in the World's literature (at least in that major portion available to him) on the size of the mammalian egg and to present it for what it is worth. If the figures are unsatisfactory the study will serve to emphasize the need of further work and more careful methods than those employed in respect to the making of measurements in the past. For the convenience of the reader the data have been condensed into Tables 4, 5, 6 and 7, classified according to the headings of the tables. As a summary of the whole the writer has been bold enough tentatively to put down in Table 8 his own ideas as to the normal range of the average or modal egg size for the various species of mammals. The table is based first on the best measurements of the living egg and second on an evaluation of the data given by the various authors, due correction being made for the methods used. The table should, however, be regarded merely as a basis for revision in the future. Nevertheless, a perusal of the figures will show that Van der Stricht was probably right when he stated the human egg to be the largest, that of Muridae the smallest among the mammiferous animals. It is also apparent that the smallest eggs are probably not as small as the former estimates would have them, the largest not as large as previously stated. The mouse egg is nearer 7o than 50 micra, the human egg nearer 150 than zoo. In other Words the table has a tendency to level up the differences in the sizes of mammalian eggs.

finally it is hoped that the appended literature list will prove helpful to those studying the mammalian ovum for thc first time. Studies on the ovum just before and just after its discharge from the ovary Were, of course, considered the essential studies. Others might have been added which give sizes of the ovarian egg incidental to histological studies on the ovaries; but it is believed that the list includes a sufficient number of these. The list of papers and books on tubal ova, practically all of which have been consulted by the writer, is believed to be fairly complete.


LIST OF LITERATURE

ALLEN, EDGAR. 1927. The menstrual cycle in the monkey, Macacus rhesus: Observations on normal animals, the effects of removal of the ovaries and the effects of injections of ovarian and placental extracts into the spayed animals. Contrib. to Embryol. Vol. 19; Carnegie Inst. of Wash. Publ. No. 380, pp. 1-44.

197.8. An unfertilized tubal ovum from Macacus rhesus. Anat. Rec., 37: 351-356. ALLEN, EDGAR, J. P. Pxxrr, Q. U. Nnwunr. and L. BLAND. 197.8. Recovery of human ova from the uterine tubes: time of ovulation in the menstrual cycle. Journ. Am. Med. Assn., 91 (14):

1o18.

Amxnzw, A. 1908. Ueber den Ban des Eiprotoplasma und fiber die excentrische Lagerung der Kernflguren in einigen Tubeneiern der Hausmaus (Mus musculus, vat. alba). Anat. Anz., 37.: 320-330.

Assnmox, R. 1894. A re-investigation into the early stages of the development of the rabbit. Quart. Journ. Micr. Sci., 37: 113-164.

1898a. The development of the pig during

the first ten days. 15121., 41: 329-359.

1898b. The segmentation of the ovum of the sheep, with observations on the hypothesis of a hypoblastic origin for the trophoblast. 16121., 41: 7.o5—~7.67..

von Bum, KARL ERNST. 187.7. Epistola de ovi mammalium et hominis genesi. (See also B. Ottow, translation into German, 197.7.)

BALLOWITZ, E. 1906. Zur Kenntnis der Eifurchung bei den Insectivoren. Anat. Anz., 7.9: 674.

(Prelim. paper; see Baumeister and Kunsenmiiller.)

BARRY, M. 1838. Researches in embryology, first series, Phil. Trans. (Ovarian follicles and eggs.)

1839. Researches in embryology, second series. (first description of cleavage of cytoplasm.) Ibidrm.

1840. Researches in embryology, third

series. Ibidam.

1841. Supplementary note to a paper

entitled: Researches in embryology, third series:

A contribution to thephysiology of the cell.

Ihidem, p. 193.

1843. Spermatozoa observed within the mammiferous ovum. Ibidm, p. 33. (See also Phil. Mag., 1843, May, p. 415.)

Baummsnzn, TH. 1913. Die Entwicklungsvorgéinge am Keime des Igels (Erinaceus Europaeus L.) von seinem Uebertritt in den Uterus bis zur Ausbildung des Mesoderms. Zeitschr. f. wiss.

Zool., 105: 1-86. Bwnnxnonn, J. 1888. Ueber die Umkehr der Keimbliitter bei der Scheermaus (Arvicola

amphibius, Desm.). Arch. f. Anat. u. Physiol., Anat. Abt., pp. 7.79186. (A 47.-celled stage, 48;», fixed in situ in 50% alcohol.)

Brsc11om=,Tr1. L. W. 1847.. Entwicklungsgeschichte der Sélugethiete und des Menschen. Leipzig.


B1sc1=1o1=r, T11. L. W. 1844. Beweis von der Begattung unabhangiger periodischer Reifun g und Loslosung der Eier der Séiugethiere und des Menschen als die erste Bedingung ihrer Fortpflanzung. Giessen.

1845. Entwicklungsgeschichte des Hundc eies. Braunschweig.

1857.. Entwicklungsgeschichte des Kanincheneies. Braunschweig.

1857.. Entwicklungsgeschichte des Meetschweinchens. Giessen.

1854. Entwicklungsgcschichte des Rehes. Giessen.

1863. Ueber die Rauzeit des Fuchses und die erste Entwicklung seines Eies. Sitz. Ber. d. k. bayrischen Akad. zu Mfinchen.

1863. Ueber die Bildung des Séiugethiereies

und seine Stellung in der Zellenlehre.

1877. Historisch-kritische Bemerkungen zu den neuesten Mittheilungen fiber die erste Entwicklung der Siiugethiereier. Mfinchen.

BONNET, R. 1884. Beitriige zur Embryologie der Wiederkiiuer, gewonnen am Schafei. Arch. f. Anat. u. Physiol., Anat. Abth., pp. 17o-7.30. (Later stages cont. ibidem, 1889, pp. 1-76.)

1897. Beitrige zur Embryologie des

Hundes. Anat. Hefte, (1. Abt.), 9: 419-517..

(Continued ibidem, 1901, vol. 16, pp. 231-337..)

1 891 . Grundriss der Entwicklungsgeschichte der Hausthiere. Berlin. 1910. Lehrbuch der Entwicklungsge schichte. 7.nd. ed. 1917.; 4th ed. 197.0; Berlin.

BRANCA, A. 1910. Caracteres des 7. mitoses de maturation chez l'homme. C. R. de l'Assoc. des Anat., p. 5.

BURRELL, HARRY. 197.7. The Platypus: its discovery, zoological position, form and characteristics, habits, life history, etc. Sydney.

CALDWELL, W. H. 1887. The embryology of Monotremata and Marsupalia Part I. Phil. Trans. Roy. Soc., 178B: 463-486. (Brief abstract in Nature, March 31, 1887, which was copied in Amer. Nat. for May, 1887.)

Conmm, G20. W. 197.3. Ovulation and menstruation in Macacus rhesus. Contrib. to Embryol., Vol. 15, Carnegie Inst. of Wash. Pub. No. 337..

CORNER, G110. W., and A. E. AMSBAUGH. 1917. Oestrus and ovulation in swine. Anat. Rec., 17.: 7.87-7.91.

Cos-rn, J. J. M. C. V. 1834. Recherches sur la génération des mammiferes. Paris.

1841. Histoire de la génération et du

développement.

1847-59. Histoire générale et particuliere

du développement des corps organises. (Text

and atlas dated 1849 consulted.)

THE QUARTERLY REVIEW OF BIOLOGY

CRUIKSHANK, WM. 1797. Experiments in which on the third day after impregnation the ova of rabbits were found in the Fallopian tubes; and in the fourth day after impregnation in the uterus itself; with the first appearance of the foetus. Phil. Trans. Roy. Soc., vol. 18, pp. 119-137, abridged ed. of 1809. (first observation of tubal ova; author just missed discovering the history of the egg of the rabbit 30 years later credited to von Baer.) Transl. in Reil’s Archiv f. d. Physiologic, Vol. 3, 1799.

VON’ EBNER, V. 19oo. Ueber das Verhalten der Zona pellucida zum Ei. Anat. Anz., 18: 55-67..

Fxscmm, A. 1905. Zur Kenntnis der Struktur des Oolemmas der Salugetiereierzellen. Anat. Hefte, 1. Abt., 7.9: 557-585 (Heft 89).

GASSMANN, 0. 197.3. Das Schicksal des unbefruchteten Eies des Menschen. Diss., Gottingen. (Rev. in Zentrbl. f. Gyn§ik., 197.5, 49: 393.)

Gxrnunr, J. BRONTE. 197.7.. Some notes on the gametogenesis of Ornithorhynchus paradoxus. Quart. Jour. Micr. Sci., 66: 475-500.

GATENBY, J. Bnomfi, and J. P. HILL. 197.4. On an ovum of Ornithorhynchus exhibiting polar bodies and polyspermy. Quart. Jour. Micr. Sci., 68: 7.7.9-2.38.

Gunmen, L. 1890. Beitréige zur Morphologie und Physiologic des Ovulationsvorganges der Sangetiere. Sitz.-Ber. d. physik-med. Societéit in Erlangen, Heft 7.7., pp. 43-61.

1906. Ueber die Bildung der Richtungs ktirper bei Mus musculus. Festschrift f. Rosen thal, Wiesbaden.

ma GRAAF, R. 1677.. De mulierum organis generationi inservientibus tradatus novus. Lugd. Batav.

Gxossnn, Ono. 197.7. Friihentwicklung, Eihaut— bildung und Placentation des Menschen und der Séiugetiere. Miinchen.

Gxwsmzw, W. S. 1896. VVrsuche fiber die kiinstliche Befruchtung von Kanincheneiern. Arch. f. Anat. u. Physiol., Anat. Abth, pp. 169-304.

HAACKE, W. 1884. Meine Entdeckung des Eierlegens der Echidna hystrix. Zool. Anz., 7: 647-653 HEAPE, W. The development of the mole (Talpa Europea); the ovarian ovum and segmentation of the ovum. Quart. Journ. Micr. Sci., 7.6: 157-174. (Later stages were described ibidem, 1883, vol. 7.3, pp. 412-457.).

1905. Ovulation and degeneration of ova in the rabbit. Proc. Roy. Soc., 76 : 7.60.

HARTMAN, CARL G. 1919. Studies in the development of the opossum (Didelphis virginiana L.) III. Description of new material on maturation, cleavage, and entoderm formation. IV. The bilaminar blastocyst. Journ. of Morphol., 32.: 1-142.. (See also ibidem, vol. 2.7, pp. 1-83.)

HARTMAN, Cam. G. 192.4. Observations on the viability of themammalian ovum. Amer. Jour. Obst. and Gynec. 7: 1-4. (See also Smith, Septima C.)

HAUSMANN. 1840. Ueber die Zeugung und Entstehung des wahren vveiblichen Eies, etc. Hannover (not accessible.)

Hnxsxm, V. 1876. Beobachtung fiber die Befruchtung und Entwicklung des Kaninchens und Meerschweinchens. Zeitschr. f. Anat. und Entwicklgesch., 1: 2.13-2.73 and 351-42.3. (See also Hensen's Article: “Zeugung" in Hermann's Handbuch f. Physiologie).

Hnusnn, C. H., and Gnono1:'L. Srnnnrnn. 192.8. Early stages in the development of the pig from the period of the initial cell cleavage to the time of the appearance of limb buds. Vol. 2.o, Contrib. to Embryol., Publication of the Carnegie Inst. of Wash. No. 394, pp. 1-30.

HILL, J. P. 1910. The early development of the Marsupalia with especial reference to the native cat (Dasyurus viverrinus). Quart. Jour. Micr. Sci., 56: 1-134.

1918. Some observations on the early development of Didelphys aurita. Quar. Jour. Micr. Sci., 63: 91-139.

HILL, J. P., and .MARG. T111311. 192.4. The early development of the cat (Felis domestica). Quart. Jour. Micr. Sci., 68: 513-602..

Ho1.1., M. 1891. Ueber die menschliche Eizelle. Anat. Anz., 6: 551-556.

1893 . Ueber die Reifung der Eizelle bei den Siiugetieren. Sitz.-Ber. d. kais. Akad. d. Wiss. (Math-naturwiss. Klasse), Wien, Abth. III, 101: 2.49-3o9.

Human, G. CARL. 1915. The development of the albino rat (Mus norvigicus albinus). Journ. of Morph., 2.6: 2.47-387.

Honruzcnr, A. A. W. 1902.. Furchung und Keimblattbildung bei Tarsius spectrum. Verhandl. kon. Akad. van Wetenschapen, Amsterdam. Vol. 8.

. 1912.. Friihe Entwicklungsstadien des I gels und ihre Bedeutung fiir die Vorgeschichte (Phylogenese) des Amnions. Zoologische J ahrbiicher, Suppl. XV, Festschr. Spengel, 2.: 739-774.

HYRTL, J. 1878. Lehrbuch der Anatomic des Menschen. Wien. (Page 776, description of an alleged human ovum over o.3oo mm. in diam.)

JENKINSON, J. W 19oo. A re-investigation of the early stages of the development of the mouse. Quart. Jour. Micr. Sci., 43: 61-82..

385

JENKINSON, J. W. 1913. Vertebrate Embryology. Oxford. (Gives a table of egg sizes.)

JONES, Tnos. WHARTON. 1837. On the first changes in the ova of Mammifera in consequence of impregnation, and the mode of origin of the chorion. Phil. Trans. Roy. Soc., 2.: 339-345. (Varied the mistake of deGraaf by confusing the liquor folliculi with gelatinous envelope of the rabbit egg).

1838. On the ova of man and mammiferous

brutes as they exist in the ovaries before im pregnation and on the discovery in them of a

vesicle. London Med. Gazette. (On the ger minal vesicle of Purkinje).

1885. On the ova of man and the mammifera before and after fecundation. The Lancet, 2.: 2.83-2.84; 332.-333. (Priority claim polemic, chiefly contra Barry; made nice needle dissections of the ovum for study of zona).

K2A'.pvn1.1, J. 1908. Anatomic und Physiologic des Ovariums der Wiederkiiuer und Schweine. Diss. Bern.

1908. Beitrag zur Anatomic und Physiologie der Ovarien der wildlebenden und gezéihmten Wiederkiiuer und Schweine. Handwirtsch. Jahrb. Schweiz, 2.2.: 53-12.9.

KEIBEL, FR. 1888. Zur Entwicklungsgeschichtc des Igels. Anat. Anz., 3: 632-637.

V 1891. Ueber die Entwicklung des Schweines. Anat. Anz., 6: 193-198. (Prelim. Account.)

1894. Studien zur Entwicklungsgeschichte des Schweines (Sus scrofa dom.). Schwalbc's Morphol. Arbeiten, 3: 1-140. (Continued ibidm, 1896, 5: 17-168).

1897. Normentafeln zur Entwicklungsges chichte des Schweines (Sus scrofa dom.). Jena.

1899. Zur Entwicklungsgeschichte des

Rehes. Verh. Anatl Ges., Anat. Anz. Ergiinz. Heft, 16: 64.

1901. Friihe Entwicklungsstadien des

Rehes und die Gastrulation der Siiuger. Verh.

der anat. Gesellsch., Bonn, Anat. Anz., Erginz. Heft, 19: 184-191.

1902.. Die Entwicklung des Rehes bis zur Anlage des Mesoblast. Arch. f. Anat. und Physiol., Anat. Abth., pp. 2.92.-314.

Kxnxrum, W. B. 1907a. The maturation of the mouse egg. Biol. Bull., 12.(4): 2.59-2.65.

I9o7b. Maturation of the egg of the white mouse. Trans. Conn. Acad. of Arts and Sci., 13: 65-87.

K6LL1xnn, ALn1m'r. 1879. Lehrbuch der Entwicklungsgeschichte der Menschen und der hijheren Thiere. Leipzig. 2.nd. ed.


KOLLIKER, ALBERT. 1884. Grundriss der Entwicklungsgeschichte des Menschen und der héiheren Thiere. and ed.

K6x.L1K1=.R, Amamz-r and VON Enmm. 1907.. Handbuch der Gewebelehre des Menschen. 6th ed., vol. 3, pp. 402-404. (Gives 7.7.0 to 37.0}; for the size of the human egg, zona 7 to 11;»; this is clearly far too high an estimate.)

KRAUSE, C. 1837. “Ei der S2'iugethicre;" pp. 26-30 of article: Vermischte Beobachtungen und Bemerkungen. Miil1er's Archiv. pp. 1-36. (Sec tables.)

KREMER, J. 197.4. Das Verhalten der Vorkerne in befruchtetem Ei der Ratte und der Maus, mit besonderer Beriicksichtigung ihrer Nucleolen. Zeitschr. f. mikr.-anat. Forschung, 1(3): 3S3‘39° 197.4b. Studien zur Oogenese der Sangetiere nach Untersuchungen bei der Ratte und Maus. Archiv f. mikr. Anat., 107.: 337-358. (Based on Sobotta's collection of 569 ovarial and 144 tubal eggs of the rat and 1700 ovarial and 67 tubal eggs of the mouse—-total 7.480 eggs).

KuNs1:NMi'11.L1m, M. 1906. Die Eifurchung des Igels (Erinaccus europaeus, L.) Zeitschr. f. wiss. Zool., 85(1): 74-106.

Kvpmuzn, C. 1887.. Das Ei von Arvicola arvalis und die vermeintliche Umkehr der Keimbliitter an denselben. Sitz.—Ber. d. k. bayer. Akad. d. Wiss. zu Miinchen, pp. 67.1-637. (Youngest egg has thickest zona yet reported—3o;/.).

LAFAIX, M. 1911. Contributions :1 l’étude de la fécondation chez les Mammiféres. These No. 314, Paris, 61 pp.

LAMS, H. 1906. Demonstrations £1 l'Assoc. Anat., Bordeaux; C. R. p. 144,

1910. Recherches sur l’oeuf de cobaye

(Cavia cobaya), maturation, fécondation, seg mentation. C. R. Assoc. Anat. Bruxelles, pp.

119-116.

1913. Etude de l’oeuf de Cobaye aux

premiers stades de Yembryogénese. Arch. de

Biol., 7.8: 7.7.9—37.3.

197.4. L’oeuf de la rate pendant les premieres phases de son développement avant son arrivée dans l’utérus. C. R. Assoc. Anat., pp. 195’I99 LAMS, H., and J. Doolmfi. 1908. Nouvelles recherches sur la maturation et la fécondation dc l'oeuf des Mammiferes. Arch. dc Biol., 23(2): 259-365. (White mouse and guinea pig).

Lnucxurr, R. 1853. Art.: “Zeugung"in Wagner’s Handbuch der Physiologic, Vol. 4, pp. 707 E. (P. 876 reference to Latheby’s alleged cases of tubal ova in man.)

THE QUARTERLY REVIEW OF BIOLOGY

LEVI, G. 1914. Das Verhalten der Chondriosomen in den friihesten Embryonalstadien der Singetiere. Anat. Anz., 46 : 187-193. (See also next.)

1915. Il comportamento dei condriosomi

durante i pit‘: precoci periodi dello sviluppo dei

Mammiferi. Arch. f. Zellforschung, 13: 471‘S7-4LONG, J. A. 1917.. The living eggs of rats and mice.

Univ. of Calif. Pub. in Zool., 9: 105-136. (See also Mark and Long. N 0 data on sizes.)

LONG, J. A., and Manx, E. L. 1911. The maturation of the egg of the mouse. Carnegie Inst. of Washington Pub. No. 147.. 77. pp. (See also Contrib. No. 7.16 Zool. Lab. Museum of Comp. Zool., Harvard).

LONGLEY, W. H. 1911. The maturation of the egg and ovulation in domestic cat. Amer. Joum. Anat., 17.: 139-168.

Lowmur, L. G. 1911. Prenatal growth of the pig. Am. Jour. Anat., 17.: 107-138.

MARK, E. L., and J. A. LONG. 1917.. Studies on early stages of development in rats and mice. III. The living eggs of rats and mice, with description of apparatus for obtaining and observing them. Contrib. from Zool. Lab. of Museum of Comp. Zool., Harvard College.

MELISSINOS, K. 1907. Die Entwicklung des Eies der Manse von den ersten Furchung-Phéinomenen bis zur Festsetzung der Allantois an der Ectop1acentarplatte. Arch. f. mikr. Anat., 70: 577-618. (No magnifications stated for drawings; no sizes given.)

Mmor, C. S. 1889. Segmentation of the ovum, with special reference to the Mammalia. Am. Nat., 7.3: 463-481; 753-769. (Very general; no sizes given.)

Mmo-r, C. S., and E. Tunes. 1905. Normal plates of the development of the rabbit (Lepus cuniculus L.). No. 5 of Keibel's Normentafeln zur Entwicklungsgeschichte der Wirbelthicre.

98 ppNAGEL, W. 1888. Das menschliche Ei. Arch. f. mikr. Anat., 31: 347.—47.3. (Gives complete

history of subject to date and good bibliography). NEWMAN, H. H. 1917.. The ovum of the ninebanded armadillo. Growth of the oocytcs, ma turation and fertilization. Biol. Bull., 7.3: roo-140. NIEOUL, J. 197.6. Rechcrches sur l’appareil endo cellulaire dc Golgi dans les premiers stades du développement des Mammiferes. La Cellule, 37: 7.1-40.

VAN OORDT, G. J. 197.1. Early developmental stages of Manis javanica Desm. Verh. kon.


Akad. van Wetensch., Amsterdam, Sec. 7., Part XXI, No. 3, 107. pp. (A few shrunken cleavage stages are included.)

Orrow, B. 197.7. Karl Ernst Von Baer's "Ueber die Bildung des Eies der Salugetiere und des Menschen,” mit einer biographischgeschichtlicher Einfiihrung in deutscher Sprache. Voss, Leipzig, 197.7. (Anniversary edition commemorating the centenary of the discovery of the mammalian egg»)

Owmv, R. 1834. On the Ova of Ornithorhynchus paradoxus. Phil. Trans. Roy. Soc., pp. 555-566. Also 1835. On the young of the Ornithorhynchus paradoxus. Trans. Zool. Soc. London, 1: 7.7.7.-7.18.

1868. The Anatomy of Vertebrates. Vol. III, p. 717., quotes egg sizes from Darwin's Variation of Plant: and Animal: under Domesticatian. I have been unable to verify Owen in this quotation from later editions of Darwin's work. Sizes quoted, calculated by myself in micra: man, 141; dog, 158; rabbit, 170; rat, 17.7; mouse, 111; pig, 17.7; cow, 101; guinea pig, 106.

PAINTER, T. 5. 197.8. Cell size and body size in rabbits. Jour. Exp. Zool., 50: 441-454. (Polish rabbit's eggs: 12.0, 17.0, 17.0, 17.6 micraav. 17.1;flemish Giant's eggs; 116, 118, 17.0, 17.0, 17.0, 17.0, I7.6—av. 17.0.)

PATTEN, BRADLEY M. 197.7. The Embryology of the Pig. Philadelphia.

Ponm. 1912.. Unbefruchtetes Ei. Zentrbl. f. Gyn£ik., 46: 1490. (Alleged human eggs.) Rmcnmvr, K.-B. 1861. Beitréige zur Entwicklungsgeschichte des Meerschweinchens. Abhandl.

d. k6n. preuss. Akad. d. Wiss., Berlin.

Rum, G. 1883. Beitréige zur Kenntniss der Reifungserscheinungen und Befruchtungsvorgange am Salugethierei. Arch. f. mikr. Anat., 2.7.: 7.33-7.70.

ROBINSON, ARTHUR. 1918. The formation, rupture, and closure of ovarian follicles in ferrets and ferret-polecat hybrids, and some associated phenomena. Trans. Roy. Soc. of Edinburgh, 57.: 303-367..

RUBASCI-IKIN, W. 1905. Ueber die Reifungs- und Befruchtungsprozesse des Meerschweincheneies. Anat. Hefte, 19(3): 507-553.

SAKURAI, TSUNEJIRO. 1906. Normentafel zur Entwicklungsgeschichte des Rehes (Cervus capreolus). F. Keibel, ed., Jena, 100 pp. (Based on Keibel‘s material.)

SALVIN-MOORE, J. E., and F. Tozan. 1908. On the maturation of the ovum in the guinea pig. Proc. Roy. Soc., 80B: 7.85-7.87. (Brief note.)

SCHMALZ, R. 1911. “Die Geschlechtsorgane" in Ellenberger’s Handbuch der vergl. Anat. der

387

Haustiere. Vol. 7., p. 510. (Quotes sizes of eggs of cow, pig, and other mammals).

SCEMALZ, R. 197.1. Das Geschlechtslcben der Haussaugetiere. Berlin. SELENKA, E. 1887. Studien iiber die Entwicklungs geschichte der Thiere. 4. Heft. Das Opossum.

Wiesbaden.

1903. Studien, etc. Menschenaffen, etc. 5. Zur vergleichenden Keimesgeschichte der Primaten. pp. 37.9—373. (p. 331: “Eifurchung des Macacus nemestrinus;" a 4-celled egg.)

SEMON, R. 1894. Zur Entwicklungsgeschichte der Monotremen. Zool. Forschungsreisen in Australien und malayischem Archipel. Jena. Bd. II, Lief. 1.

SMITH, SEPTIMA C. 197.5. Degenerative changes in the unfertilized uterine eggs of the opossum, with remarks on the so-called parthenogenesis in mammals. Am. Jour. Anat., 35(1): 81104.

Sosorm, J. 1893. Mitteilungen iiber die Vorgiinge bei der Reifung, Befruchtung und erste Furchung des Eies der Maus. Verh. Anat. Gesell. Gottingen, pp. 111—17.0.

1894. Die Befruchtung des Eies der Maus.

Anat. Anz. 9: 2.2.0-7.2.3 (Prelim. note.)

1895. Die Befruchtung und Furchung des

Eies der Maus. Arch. f. mikr. Anat., 45: 15-97..

(The classic on this subject.)

1895. Die Reifung und Befruchtung des

Wirbeltiereies. Ergebn. d. Anat. u. Entwick1. Gesch., 5: 507-561. (Rcview.) See also con tinuation, 1906, ibidem, 6: 493-593. (173 titles.)

1907. Die Bildung der Richtungskorper

bei der Maus. Anat. Hefte, 35: 493-557.. (Heft

106.)

1908. Ueber die Richtungsteilungen des

Siiugetiereies, speziell fiber die Zahl der Rich tungskérper. Verhndl. d. phys.-med. Gesellsch.

Wiirzburg, 39: 7.41-7.61.

1901. Die erste Entwicklung des Méiuseeies

nach der Furchung. Anat. Anz., Vol. 19,

Erganzungsheft, pp. 4-11.

197.4. Beitriige zur Furchung des Eies der Séiugetierc mit besondere Beriicksichtigung der Frage der Determination der Furchung. I. Die Furchung des Eies der Maus (Mus musculus). Zeitschr. f. Anat. u. Entwicl<l., 77.: 94-116.

$030114, J., und G. BURCKHARD. 1911. Reifung und Befruchtung des Eies der weissen Ratte. Anat. Hefte, 47.: 433-498.

Span, Gnu F. 1883. Beitrag zur Entwicklungsgeschichte der friiheren Stadien des Meerschweinchens bis zur Vollendung der Keimblase. Archiv f. Anat. u. Physiol., Anat. Abth., pp. 44-60.


Sprmcmz, W. B. 1884. The eggs of Monotremes. Nature, 31: 132..

TAFANI, A. 1889. I primi momenti dello sviluppo dei mammiferi. Rendiconti d. R. Accad. dei Lincei (C1. di Sci. mor., stor., e filol.), 5(1): 119-125. (No data on sizes.)

1889. La fécondation et la segmentation

étudiées dans les oeufs des rats. Arch. Italiennes

de Biol., 11: 112.. (Unillustrated general report.)

1889. La fecondazione e la segmentazione studiate nelle uova dei Topi. Accad. med. fisic., fiorent. (Not available to the present writer.)

VAN BENEDEN, E. 1870. Recherches sur la composition et la significance de 1'oeuf. Mém. de l’Acad. roy. de Belgique, Vol. 34.

1875. La maturation de 1'oeuf, 1aféconda tion et les premieres phases du développement

embryonaire des Mammiferes d'apres les recherches faites sur la Lapin. Bull. Acad. Roy. des

Sci., des Le-ttres et des Beaux-arts de Belgique,

40: 686.

1880. Recherches sur l'embryologie des

Mammiféres. La formation des feuillets chez

le Lapin. Arch. de Biol., 1: 137-2.2.4. (Con tains frequently copied figures of the rabbit vesicle.)

1899. Recherches sur les premiers stades

du développement du Murin (Vespertilio muti nus). Anat. Anz., 16: 307.

1911. De la segmentation, de la formation de la cavité blastodermique et de l'embryon didermique chez le Murin. Arch. de Biol., 2.6: 1-64. (This paper, and the succeeding one on later stages, printed posthumously by Brachet, ibidmz, 1912., 2.7: 191-402., is also a fertile source of illustrations for writers of texts on mammalian embryology.)

VAN BENEDEN, E., and C11. JuL1N. 1880. Observations sur la maturation, la fécondation et la segmentation de l'oeuf chez les Cheiropteres. Arch. de Biol., 1: 551-572..

VAN DER Snucnr, O. 1904. La structure dc l'oeuf des Mammiferes. Premiere partie: L'oocyte au

THE QUARTERLY REVIEW OF BIOLOGY

stade de l'accroissement. 1—102..

VAN DER STRICHT, O. 1905. La structure, etc. Deuxieme partie. Structure de l'oeuf de la femme. Bull. de l'Acad. Roy. de Med. de Belgique, Séance Juin 2.4, 1905, pp. 1-35.

1909. La structure, etc. Troisiéme partie.

L’oocyte a la fin du stade d'accroissement, au

stade de la maturation, au stade de la fécondation

et au début de la segmentation (Chauve-souri,

Vesperugo noctula). Mém. Acad. Roy. de

Belgique, Sér. II, Vol. II, pp. 1-176.

192.3. Etude comparée des ovules des Mammiféres aux ditférentes périodes de l'ovogen<‘:se d'apres les travaux du Laboratoire d'Histologie et d'Embryologie de l’Université de Gand. Arch. de Biol., 33: 129-300. 171 figures.

VAN’ DER S1'1uc11'r, R. 1911. Vitellogenése dans l'ovule du chatte. Arch. de Biol., 2.6: 365-481. (Prize essay, Univ. of Gand, 1909.)

WAGNER, Runomnn. 1836. Prodromus historiae generationis hominis atque animalium. Leipzig. (3 tables of measurements of invertebrate and vertebrate eggs, incl.: sheep, 148; rabbit, 148; cat, 150, 110, 2.2.0; rat, 73; bat, 92. micra.)

WALDEYER, W. Eierstock und Ei. Leipzig. 1870.

“Die Geschlechtszellen" in Hertwig's Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbelthiere. Vol 1, Part 1, pp. 86-476. (P. 32.3: mammalian egg, 100-2.00 micra; hedgehog and mouse, 60; guinea pig, 90; dog and rabbit, 180.)

WEBER, M. 1904. Die Saugetiere. Jena.

WEIL, C. 1873. Beitriige zur Kenntniss der Befruchtung und Entwicklung des Kanincheneies. Stricker's (Wiener) med. J ahrbficher.

WESTER, 192.1. Eierstock und Ei. Befruchtung und Unfruchtbarkeit bei den Haustieren.

Berlin.

WILSON, J. T., and J. P. HILL. 1907. Observations on the development of Ornithorhynchus. Phil. Trans. Roy. Soc., 199B: 31-108.

Zscnoxmz, E. 1900. Die Unfruchtbarkeit des Rindes, ihre Ursachen und Bekimpfung. Zfirich.

Arch. de Biol., 2.1: