Palate Development

From Embryology
Revision as of 10:10, 26 October 2010 by S8600021 (talk | contribs) (Created page with '== Introduction == thumb|300px|Fetal head (week 12) The palate has two key stages of development during embryonic and an early fetal involving the…')
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Introduction

Fetal head (week 12)

The palate has two key stages of development during embryonic and an early fetal involving the fusion of structures (epithelia to mesenchymal).


Head Links: Introduction | Medicine Lecture | Medicine Lab | Science Lecture | Lecture Movie | Science Lab | pharyngeal arch | Craniofacial Seminar | mouth | palate | tongue | placode | skull | neural crest | Head and Face Movies | head abnormalities | Category:Head
Historic Head Embryology  
1910 Skull | 1910 Skull Images | 1912 Nasolacrimal Duct | 1921 Human Brain Vascular | 1923 Head Subcutaneous Plexus | 1919 21mm Embryo Skull | 1920 Human Embryo Head Size | 1921 43 mm Fetal Skull | Historic Disclaimer

Some Recent Findings

  • A dosage-dependent role for Spry2 in growth and patterning during palate development[1] "The formation of the palate involves the coordinated outgrowth, elevation and midline fusion of bilateral shelves leading to the separation of the oral and nasal cavities. Reciprocal signaling between adjacent fields of epithelial and mesenchymal cells directs palatal shelf growth and morphogenesis. Loss of function mutations in genes encoding FGF ligands and receptors have demonstrated a critical role for FGF signaling in mediating these epithelial-mesenchymal interactions. The Sprouty family of genes encode modulators of FGF signaling. We have established that mice carrying a deletion that removes the FGF signaling antagonist Spry2 have cleft palate."

Textbooks

Pharyngeal arch cartilages.jpg
  • The Developing Human: Clinically Oriented Embryology (8th Edition) by Keith L. Moore and T.V.N Persaud - Moore & Persaud Chapter Chapter 10 The Pharyngeal Apparatus pp201 - 240.
  • Larsen’s Human Embryology by GC. Schoenwolf, SB. Bleyl, PR. Brauer and PH. Francis-West - Chapter 12 Development of the Head, the Neck, the Eyes, and the Ears pp349 - 418.

Development Overview

Pharyngeal Arch Components

Major features to identify for each: arch, pouch, groove and membrane. Contribute to the formation of head and neck and in the human appear at the 4th week. The first arch contributes the majority of upper and lower jaw structures.

Early Face and Pharynx

  • Pharynx - begins at the buccopharyngeal membrane (oral membrane), apposition of ectoderm with endoderm (no mesoderm between)


Pharyngeal Arch Development

Pharyngeal arch structure cartoon.gifStage13 pharyngeal arch excerpts.gif

  • branchial arch (Gk. branchia= gill)
  • arch consists of all 3 trilaminar embryo layers
  • ectoderm- outside
  • mesoderm- core of mesenchyme
  • endoderm- inside

Neural Crest

  • Mesenchyme invaded by neural crest generating connective tissue components
  • cartilage, bone, ligaments
  • arises from midbrain and hindbrain region

Face Development

Stage16-18 face animation.gif

Begins week 4 centered around stomodeum, external depression at oral membrane

5 initial primordia from neural crest mesenchyme

  • single frontonasal prominence (FNP) - forms forehead, nose dorsum and apex
  • nasal placodes develop later bilateral, pushed medially
  • paired maxillary prominences - form upper cheek and upper lip
  • paired mandibular prominences - lower cheek, chin and lower lip

Frontonasal Process

The frontonasal process (FNP) forms the majority of the superior part of the early face primordia. It later fuses with the maxillary component of the first pharyngeal arch to form the upper jaw. Failure of this fusion event during the embryonic period leads to cleft lip. Under the surface ectoderm the process mesenchyme consists of two cell populations; neural crest cells, forming the connective tissues; and the mesoderm forming the endothelium of the vascular network.

A chicken developmental model study has identified a specific surface region, the Frontonasal Ectodermal Zone (FEZ), initially induced by bone morphogenetic proteins that appears to regulate the future growth and patterning of the frontonasal process. The specific frontonasal ectodermal zone was located in the frontonasal process ectoderm flanking a boundary between Sonic hedgehog (Shh) and Fibroblast growth factor 8 (Fgf8) expression domains.[2]


Head Growth

  • continues postnatally - fontanelle allow head distortion on birth and early growth
  • bone plates remain unfused to allow growth, puberty growth of face


Embryonic Palate

Primary palate, fusion in the human embryo between stage 17 and 18, from an epithelial seam to the mesenchymal bridge. Stage17-18 Primary palate.gif

Fetal Palate

Secondary palate, fusion in the human embryo in week 9. This requires the early palatal shelves growth, elevation and fusion during the early embryonic period. The fusion event is to both each other and the primary palate. palatal shelf elevation | secondary palate


Movies

Face 001 icon.jpg Palate 001 icon.jpg Palate 002 icon.jpg Tongue 001 icon.jpg
Face Palate 1 Palate 2 Tongue


More Movies

References

  1. <pubmed>17693063</pubmed>
  2. <pubmed>18028903</pubmed>


Reviews

Articles

Search PubMed

Search Pubmed: palate development | cleft palate development |

Additional Images

Terms

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 18) Embryology Palate Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Palate_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G