Ovary Development: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 423: Line 423:
See also [[Genital System - Abnormalities]]
See also [[Genital System - Abnormalities]]


===International Classification of Diseases===
===Female Infertility Genes===
'''E28''' Ovarian dysfunction
* Excl.: isolated gonadotropin deficiency (E23.0); postprocedural ovarian failure (E89.4)


'''E28.0''' Estrogen excess
{{Female Infertility Genes table 1}}
* Use additional external cause code (Chapter XX), if desired, to identify drug, if drug-induced.


'''E28.1''' Androgen excess
===International Classification of Diseases===
* Hypersecretion of ovarian androgens
* Use additional external cause code (Chapter XX), if desired, to identify drug, if drug-induced.
 
'''E28.2''' Polycystic ovarian syndrome
* Sclerocystic ovary syndrome
* Stein-Leventhal syndrome
 
'''E28.3''' Primary ovarian failure
* Decreased oestrogen
* Premature menopause NOS
* Resistant ovary syndrome
* Excl.: menopausal and female climacteric states (N95.1); pure gonadal dysgenesis (Q99.1); Turner syndrome (Q96.-)
 
'''E28.8''' Other ovarian dysfunction
* Ovarian hyperfunction NOS


'''E28.9''' Ovarian dysfunction, unspecified


===Polycystic Ovary Syndrome===
===Polycystic Ovary Syndrome===

Revision as of 14:13, 31 March 2019

Embryology - 28 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Adult human ovary viewed by endoscopy

The female gonad is the ovary and is closely associated with female internal genital (reproductive) tract development. In humans, these laterally paired organs lie within the peritoneal cavity. Genes such as WNT-4 and DAX-1 necessary for initiation of female pathway ovary development, female gonad is not considered a default process.


Initial gonad development in females and males is virtually identical with germ cells migrating into an indifferent gonad. In females with XX, the ovary then begins to develop and the subsequent structure and timecourse of germ cell then differs between males and females. In the ovary oocytes proliferate prior to birth and arrest in meiosis 1.


Links: menstrual cycle | oocyte | X Chromosome | Category:Ovary


Genital Links: genital | Lecture - Medicine | Lecture - Science | Lecture Movie | Medicine - Practical | primordial germ cell | meiosis | endocrine gonad‎ | Genital Movies | genital abnormalities | Assisted Reproductive Technology | puberty | Category:Genital
Female | X | X inactivation | ovary | corpus luteum | oocyte | uterus | vagina | reproductive cycles | menstrual cycle | Category:Female
Male | Y | SRY | testis | spermatozoa | ductus deferens | penis | prostate | Category:Male
Historic Embryology - Genital 
General: 1901 Urinogenital Tract | 1902 The Uro-Genital System | 1904 Ovary and Testis | 1912 Urinogenital Organ Development | 1914 External Genitalia | 1921 Urogenital Development | 1921 External Genital | 1942 Sex Cords | 1953 Germ Cells | Historic Embryology Papers | Historic Disclaimer
Female: 1904 Ovary and Testis | 1904 Hymen | 1912 Urinogenital Organ Development | 1914 External Genitalia | 1914 Female | 1921 External Genital | 1927 Female Foetus 15 cm | 1927 Vagina | 1932 Postnatal Ovary
Male: 1887-88 Testis | 1904 Ovary and Testis | 1904 Leydig Cells | 1906 Testis vascular | 1909 Prostate | 1912 Prostate | 1914 External Genitalia | 1915 Cowper’s and Bartholin’s Glands | 1920 Wolffian tubules | 1935 Prepuce | 1935 Wolffian Duct | 1942 Sex Cords | 1943 Testes Descent | Historic Embryology Papers | Historic Disclaimer

Some Recent Findings

Testosterone metabolism
  • Reelin and aromatase cooperate in ovarian follicle development[1] "Reelin plays an important role in cerebral cortex development and synaptogenesis. In the hippocampus, the neurosteroid estrogen affects reelin expression. ...Our data provide evidence of a local increase of aromatase expression by reelin. Regarding reproduction, this crosstalk may contribute to follicular stability and counteract luteinization in ovaries."
  • Review - Polycystic ovary syndrome[2] "This article aims to provide a balanced review of the latest advances and current limitations in our knowledge about PCOS while also providing a few clear and simple principles, based on current evidence-based clinical guidelines, for the proper diagnosis and long-term clinical management of women with PCOS."
  • Quantitative proteomic profiling human ovary from early to mid-gestation[3] "Here, quantitative mass spectrometry was conducted on ovarian tissue collected at key stages during the first two trimesters of human gestational development, confirming the expression profiling data using immunofluorescence as well as in-vitro modeling with human oogonial stem cells (OSCs) and human embryonic stem cells (ESCs). A total of 3,837 proteins were identified in samples spanning developmental days 47-137. Bioinformatics clustering and Ingenuity Pathway Analysis identified DNA mismatch repair and base excision repair as major pathways upregulated during this time. Additionally, MAEL and TEX11, two key meiosis-related proteins, were identified as highly expressed during the developmental window associated with fetal oogenesis."
  • Review - Role of androgens in the ovary[4] "It has been well established for decades that androgens, namely testosterone (T) plays an important role in female reproductive physiology as the precursor for oestradiol (E2). However, in the last decade a direct role for androgens, acting via the androgen receptor (AR), in female reproductive function has been confirmed. Deciphering the specific roles of androgens in ovarian function has been hindered as complete androgen resistant females cannot be generated by natural breeding. In addition, androgens can be converted into estrogens which has caused confusion when interpreting findings from pharmacological studies, as observed effects could have been mediated via the AR or estrogen receptor. The creation and analysis of genetic mouse models with global and cell-specific disruption of the Ar gene, the sole mediator of pure androgenic action, has now allowed the elucidation of a role for AR-mediated androgen actions in the regulation of normal and pathological ovarian function."
More recent papers  
Mark Hill.jpg
PubMed logo.gif

This table allows an automated computer search of the external PubMed database using the listed "Search term" text link.

  • This search now requires a manual link as the original PubMed extension has been disabled.
  • The displayed list of references do not reflect any editorial selection of material based on content or relevance.
  • References also appear on this list based upon the date of the actual page viewing.


References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

More? References | Discussion Page | Journal Searches | 2019 References | 2020 References

Search term: Ovary Development | Ovarian Follicle Development |Folliculogenesis | Ovulation |

Older papers  
  • Retransplantation of cryopreserved ovarian tissue: the first live birth in Germany[5] "Cryopreserved ovarian tissue can be retransplanted to restore fertility after radiation or chemotherapy. To date, 15 live births after retransplantation have been reported worldwide. We report the first pregnancy and the first live birth after retransplantation in Germany. This was the first live birth after retransplantation of cryopreserved ovarian tissue in Germany and also the first case with histological confirmation that the oocyte from which the patient conceived could only have come from the retransplanted tissue."
  • Mammalian ovary differentiation - A focus on female meiosis[6] "Over the past 50 years, the ovary development has been subject of fewer studies as compare to the male pathway. Nevertheless due to the advancement of genetics, mouse ES cells and the development of genetic models, studies of ovarian differentiation was boosted. This review emphasizes some of new progresses in the research field of the mammalian ovary differentiation that have occurred in recent years with focuses of the period around prophase I of meiosis and of recent roles of small non-RNAs in the ovarian gene expression."
  • Human RSPO1/R-spondin1 is expressed during early ovary development and augments β-catenin signaling[7] "Human testis development starts from around 42 days post conception with a transient wave of SRY expression followed by up-regulation of testis specific genes and a distinct set of morphological, paracrine and endocrine events. Although anatomical changes in the ovary are less marked, a distinct sub-set of ovary specific genes are also expressed during this time. The furin-domain containing peptide R-spondin1 (RSPO1) has recently emerged as an important regulator of ovary development through up-regulation of the WNT/β-catenin pathway to oppose testis formation. Here, we show that RSPO1 is upregulated in the ovary but not in the testis during critical early stages of gonad development in humans (between 6-9 weeks post conception), whereas the expression of the related genes WNT4 and CTNNB1 (encoding β catenin) is not significantly different between these tissues. Furthermore, reduced R-spondin1 function in the ovotestis of an individual (46,XX) with a RSPO1 mutation leads to reduced β-catenin protein and WNT4 mRNA levels, consistent with down regulation of ovarian pathways"

Human Ovary Timeline

Fetal gonad retinoid receptor expression[8]

Approximate Timeline of human development listed below.

Human Ovary Timeline
Time Carnegie Stage Event
24 days 11 intermediate mesoderm, pronephros primordium
28 days 12 mesonephros and mesonephric duct
35 days 14 uteric bud, metanephros, urogenital ridge
42 days 17 cloacal divison, gonadal primordium (indifferent)
49 days 19 paramesonephric duct, gonadal differentiation
6-7 weeks (GA 8-9 weeks) primordial germ cell mitosis proliferation commences
56 days 23 paramesonephric duct fusion (female)
12-14 weeks (GA 14-16 weeks) fetal primordial germ cell meiosis germ cell differentiation, formation of syncitial clusters of oogonia
15-18 weeks (GA 17–20 weeks) fetal breakdown of syncitial clusters and assembly of primordial follicles
Links: ovary | oocyte | timeline | Category:Timeline

Movies

Gonad-icon.jpg
 ‎‎Ovary
Page | Play
Urogenital septum 001 icon.jpg
 ‎‎Urogenital Septum
Page | Play
Female external 001 icon.jpg
 ‎‎Female External‎‎
Page | Play
Uterus 001 icon.jpg
 ‎‎Uterus
Page | Play
Mouse Primordial Germ Cell Migration
Primordial germ cell 001 icon.jpg
 ‎‎Germ Cell E9.0
Page | Play
Primordial germ cell 002 icon.jpg
 ‎‎Germ Cell E9.5
Page | Play
Primordial germ cell 003 icon.jpg
 ‎‎Germ Cell E10.5
Page | Play

Oogenesis

The 2 human ovaries gradually lose follicles both before and after puberty (the beginning of ovulation); beginning with about several million before birth, maximum number at birth, 300-400,000 by puberty and finally by late 40’s have only a few follicles left. Recent studies suggest that the original calculations of ovary follicle numbers at birth were over-estimates and the actual figure should be about 2.5 million.[9] The number of antral follicles detected within the ovary also decreases with increasing maternal age.

In humans, a primodial follicle take about 150 days to develop into a preantral follicle (primary) and another 120 days to form an antral follicle (secondary). A number of antral follicles will then "compete" for 14-15 days to become the dominant follicle, which will undergo ovulation.

Ovarian Reserve - Clinical term for the number of oocytes (non-growing follicles) available for possible fertilization at the different times during female reproductive life. A blood test for Anti-Mullerian Hormone (AMH) levels is used clinically as a measure of the ovarian reserve.

Human ovary non-growing follicle model.jpg

Human ovary non-growing follicle model[9]


Cumulus-Oocyte Complex - (COC) Clinical term used in Assisted Reproductive Technology to describe the ovulated Graafian follicle consisting of the oocyte surrounded by a packed layers of cumulus cells.

Fetal Ovary

Fetal ovary meiosis 03.jpg

Fetal human ovary meiosis (second trimester)[10] H2AFX and SYCP3 are meiotic markers

Infant Ovary

Histology of the female infant ovary Human infant ovary follicle 01.jpg
Overview Follicle

This image shows a region (see inset) of the infant ovary cortex.

There are a large number of developing oocytes which will eventually form a dense primordial germ layer at the ovary periphery.

Later stages of follicle development are completely absent and will begin to only appear just prior to puberty.

Table showing the Growth of the Ovary  
Vertex-breech
length
Greatest diam.
of head
Right Ovary Left Ovary Comparison between
Breadth Length Breadth Length Length Breadth
R. L. R. L.
50.0 42.6 0.9 1.9 0.9 2.5 .. +
125.0 123.0 1.2 5.9 1.5 4.1 + .. .. +
138.0 115.0 1.6 5.0 2.0 5.0 .. +
156.0 131.0 1.9 7.2 2.0 7.1 + .. .. +
173.0 163.5 3.0 9.0 ... ... .. .. .. ..
190.0 175.0 2.9 7.7 2.1 7.8 .. + + ..
223.0 162.0 2.9 10.5 3.0 9.1 + .. .. +
235.0 190.0 4.2 10.0 3.8 12.0 .. + + ..
260.0 213.0 3.6 11.1 4.0 11.4 .. + .. +
272.0 213.0 3.0 10.0 3.5 9.2 + .. .. +
305.0 238.0 3.0 9.9 3.9 10.9 .. + .. +
347.0 ... 3.5 10.8 4.9 8.5 + .. .. +
355.0 273.0 4.0 14.0 5.2 9.9 + .. .. +
386.0 324.0 5.1 11.5 3.0 9.9 + .. + ..
402.0 301.0 5.05 10.5 3.0 12.0 .. + + ..
3 weeks ... 5.0 17.0 5.0 14.0 + ..
6 weeks ... 7.5 15.0 7.0 14.7 + .. + ..
6 weeks ... 7.0 18.0 8.0 17.0 + .. .. +
10 weeks ... ... 14.0 ... 16.0 + ..
2 months ... 6.0 14.5 4.0 13.0 + .. + ..
3 months ... 6.0 15.5 5.0 14.7 + .. + ..
7 months ... 5.9 15.5 4.5 18.1 .. + + ..
15 months ... 9.0 18.0 9.0 19.5 + ..
I.75 years ... 7.0 20.0 8.5 15.0 + .. .. +
4 years ... 10.0 27.0 12.7 23.2 + .. .. +
5.5 years ... 11.1 29.0 9.1 26.1 + .. + ..
14 years ... 11.9 26.5 12.0 29.5 .. + .. +
The measurements are all given in millimeters, breech length is measured along the nape and the back.
Reference: Felix W. The development of the urinogenital organs. In Keibel F. and Mall FP. Manual of Human Embryology II. (1912) J. B. Lippincott Company, Philadelphia. pp 752-979.
    Links: 1912 Ovary Growth | Table Ovary Growth Table | Collapsible Table | Ovary Development

Postnatal Oogenesis

There is a dogma in mammalian development that new oocyte and follicle production does not occur during postnatal life. There is substantial data that shows human ovarian changes postnatally are loss by apoptosis of prenatal oocytes. A research group (Tilly JL, Johnson J. 2004, 2007) has published experiments using mice, showing potentially other sources/sites (bone marrow) of oocyte (putative germ cell) generation. They recently stated that the argument should be based upon "experimental approaches than simply an absence of evidence, especially from gene expression analyses". Several other research groups (Eggan K etal. 2004 and Veitia etal. 2007) have argued against these findings.

Adult Follicle Structure

Secondary (Antral) Follicle Structure

A follicle usually contains a single oocyte (egg, ovum, female gamete) and a series of supporting cells and a single fluid-filled space in layers surrounding this cell. The 3 layers below are arranged in layers outward from the oocyte.

Granulosa Cells

  • A specific cell type that proliferates in association with the oocyte within the developing follicles of the ovary. These cells form the follicle stratum granulosa and are also given specific names based upon their position within the follicle.
  • With development of the antral follicle, there are two populations of granulosa cells with distinct characteristics and functions: mural granulosa cells and cumulus cells.[11]
    • mural granulosa cells - an endocrine role by producing steroid hormones and various other ligands
    • cumulus cells - play a support role for oocyte development

Alternate Histological Terms

    • The membrana granulosa cells sit on the follicular basal lamina and line the antrum as a stratified epitelium. Following ovulation, these granulosa cells contribute to corpus luteum.
    • The cumulus oophorus is a column of granulosa cells that attaches the oocyte to the follicle wall. At ovulation, this column of cells is broken or separates to release the oocyte from its follicle attachment.
    • The corona radiata are the granulosa cells that directly surround the oocyte, and are released along with it at ovulation. Following ovulation, the corona radiata provide physical protection to the oocyte and are the initial structural barrier that spermatazoa must penetrate during fertilization.


Links: granulosa cell

Follicular Fluid

  • The antrum is a fluid-filled space in the secondary (antral) follicle
  • At ovulation, fluid is released along with the oocyte
  • Thought to "carry" the oocyte out of the follicle (like a boat on a wave)
  • Aids entry into the uterine tube

Theca Interna

(Greek, thek = box) The ovarian follicle endocrine cells forming the inner layer of the theca folliculi surrounding the developing follicle within the ovary. This vascularized layer of cells respond to leutenizing hormone (LH) synthesizing and secreting androgens (androstendione) transported to glomerulosa cells which process initially into testosterone and then by aromatase into estrogen (estradiol). Theca cells do not begin hormonal functions until puberty.

Theca Externa

(Greek, thek = box) The ovarian follicle stromal cells forming the outer layer of the theca folliculi surrounding the developing follicle within the ovary. Consisting of connective tissue cells, smooth muscle and collagen fibers.

Follicle Classification

There are several different nomenclatures for the stages of follicle maturation. It probably does not matter which naming system you use, as long as you are consistent and use the same set of terminology for all stages. Early stages of follicle development appear to be gonadotropin (Gn) independent and with development become gonadotropin "sensitive" and then "dependent" . (UK spelling is gonadotrophin).

Ovary- follicle stages.jpg

Follicle development stages and the relationship to gonadotropin (Gn)[12]]]

Human ovary follicle development.jpg

Human ovary follicle development

Human Ovarian Follicle Classification
Class Alternate nomenclature Type Number of Cells Size (diameter µm) Size ultrasound (mm)
primordial follicle small 1, 2, 3 25 less than 50
primary follicle preantral 4
5
26 - 100
101 - 300
up to 200
secondary follicle antral
small antral
large antral

6
7

3001 - 500
501 - 1000
500
1000 - 6000
less than 18
preovulatory follicle Graafian 8 greater than 1000 greater than 6000 18 – 28
  Links: ovary | oocyte | menstrual cycle

Primordial Follicle

Human Follicle Classification
Follicle Class Alternate nomenclature Type Number of Cells Size (diameter µm)
Primordial small 1, 2, 3 25 less than 50
Human Ovarian Follicle Classification  
Class Alternate nomenclature Type Number of Cells Size (diameter µm) Size ultrasound (mm)
primordial follicle small 1, 2, 3 25 less than 50
primary follicle preantral 4
5
26 - 100
101 - 300
up to 200
secondary follicle antral
small antral
large antral

6
7

3001 - 500
501 - 1000
500
1000 - 6000
less than 18
preovulatory follicle Graafian 8 greater than 1000 greater than 6000 18 – 28
  Links: ovary | oocyte | menstrual cycle
Ova44he.jpg

Primate primordial follicles (Stain - Haematoxylin Eosin). Note the single layer of follicle cells surrounding the oocyte.

HertigAdams1967 fig04.jpg

Electron Micrograph of a human oocyte in a primordial follicle. Most of the organelles are concentrated in one pole of the oocyte.[13]

Primary Follicle

Human Follicle Classification
Follicle Class Alternate nomenclature Type Number of Cells Size (diameter µm)
Primary preantral 4
5
26 - 100
101 - 300
up to 200
Human Ovarian Follicle Classification  
Class Alternate nomenclature Type Number of Cells Size (diameter µm) Size ultrasound (mm)
primordial follicle small 1, 2, 3 25 less than 50
primary follicle preantral 4
5
26 - 100
101 - 300
up to 200
secondary follicle antral
small antral
large antral

6
7

3001 - 500
501 - 1000
500
1000 - 6000
less than 18
preovulatory follicle Graafian 8 greater than 1000 greater than 6000 18 – 28
  Links: ovary | oocyte | menstrual cycle

Ovary histology 005.jpg

Histological image of a primary follicle.

Secondary Follicle

Human Follicle Classification
Follicle Class Alternate nomenclature Type Number of Cells Size (diameter µm)
Secondary small antral
large antral
6
7
3001 - 500
501 - 1000
500
1000 - 6000
Human Ovarian Follicle Classification  
Class Alternate nomenclature Type Number of Cells Size (diameter µm) Size ultrasound (mm)
primordial follicle small 1, 2, 3 25 less than 50
primary follicle preantral 4
5
26 - 100
101 - 300
up to 200
secondary follicle antral
small antral
large antral

6
7

3001 - 500
501 - 1000
500
1000 - 6000
less than 18
preovulatory follicle Graafian 8 greater than 1000 greater than 6000 18 – 28
  Links: ovary | oocyte | menstrual cycle

Preovulatory Follicle

From the cohort of secondary follicles, in the late luteal phase of the previous menstrual cycle, a dominant follicle now grows. The follicle growth rate is about 2 mm per day, achieving a preovulatory diameter between 18 to 28 mm as measured by ultrasound. Ovulation is triggered by a surge of pituitary luteinizing hormone (LH) about 36 hours before follicle release.

Human Follicle Classification
Follicle Class Alternate nomenclature Type Number of Cells Size (diameter µm)
Preovulatory Graafian 8 greater than 1000 greater than 6000
Human Ovarian Follicle Classification  
Class Alternate nomenclature Type Number of Cells Size (diameter µm) Size ultrasound (mm)
primordial follicle small 1, 2, 3 25 less than 50
primary follicle preantral 4
5
26 - 100
101 - 300
up to 200
secondary follicle antral
small antral
large antral

6
7

3001 - 500
501 - 1000
500
1000 - 6000
less than 18
preovulatory follicle Graafian 8 greater than 1000 greater than 6000 18 – 28
  Links: ovary | oocyte | menstrual cycle

Atresia

At any one time the majority of follicles are destined not to complete maturation and at any stage (from type 4-7) degeneration of the follicle can occur. Cells die by apoptosis.

Follicle Growth

Ovary follicle size graph

Graph shows species comparison in follicle size growth (diameter) at different stages of follicle development.[14] (See also Oocyte size graph)

Human Ovarian Follicle Classification  
Class Alternate nomenclature Type Number of Cells Size (diameter µm) Size ultrasound (mm)
primordial follicle small 1, 2, 3 25 less than 50
primary follicle preantral 4
5
26 - 100
101 - 300
up to 200
secondary follicle antral
small antral
large antral

6
7

3001 - 500
501 - 1000
500
1000 - 6000
less than 18
preovulatory follicle Graafian 8 greater than 1000 greater than 6000 18 – 28
  Links: ovary | oocyte | menstrual cycle

Follicle Factors

Ovarian developmental genes[15]

There are both external endocrine factors and internal follicle factors that can influence the development and atresia of ovarian follicles.

External Factors

Leutenizing Hormone (LH)

  • from the anterior pituitary
  • stimulate the theca interna to synthesize and secrete androgens (androstendione) transported to granulosa cells
  • granulosa cells process initially into testosterone and then by aromatase into estrogen (estradiol)

Follicle-stimulating hormone (FSH)

  • from the anterior pituitary
  • initiates follicle growth through the granulosa cells
  • involved in selecting the most advanced (sensitive) follicle to proceed to ovulation

Internal Factors

Oocyte Factors

  • Growth Differentiation Factor-9 (GDF-9) - involved in the differentiation of theca cells during this early stage of follicular development OMIM 601918
  • Bone morphogenetic protein 15 (BMP15)
  • Fibroblast growth factor 8B (FGF8B)

Granulosal Factor(s)

  • stimulates the recruitment of theca cells from cortical stromal cells

Thecal Factor(s)

  • appear to be several inhibitors of apoptotic cell death
  • Epidermal growth factor (EGF)
  • Transforming growth factor alpha (TGF-α)
  • keratinocyte growth factor (KGF)
  • hepatocyte growth factor (HGF)
  • Bone morphogenetic protein 7 (BMP-7) also known as osteogenic protein-1 or OP-1

Molecular

Mammalian Sexual Development Genes
Gene (OMIM) Protein Function Gonad Phenotype of Null Mice Human Syndrome
Ovary-determining pathway
Wnt4 Signaling molecule Müllerian duct agenesis, testosterone synthesis, and coelomic vessel formation XY female (GOF)
FoxL2 Transcription factor Premature ovarian failure BPES
Dax1 Nuclear receptor XY sex reversal (GOF) XY sex reversal (GOF)
RSPO1 Signaling molecule XX sex reversal (LOF) XX sex reversal (LOF)
Table Legend
  • BPES - blepharophimosis-ptosis-epicanthus inversus syndrome
  • GOF - gain-of-function mutation
  • LOF - loss-of-function mutation
  • ND - not determined
  • WAGR - Wilms' tumor-aniridia-genitourinary malformations-mental retardation
a No mutations in human sexual disorders identified to date.

b Candidate gene for 9p deletion, XY sex reversal.

Table modified from [16]


Ovary Growth

Table below is from historic data (1912) from measurement of human histological materials.[17]

Table showing the Growth of the Ovary
Vertex-breech
length
Greatest diam.
of head
Right Ovary Left Ovary Comparison between
Breadth Length Breadth Length Length Breadth
R. L. R. L.
50.0 42.6 0.9 1.9 0.9 2.5 .. +
125.0 123.0 1.2 5.9 1.5 4.1 + .. .. +
138.0 115.0 1.6 5.0 2.0 5.0 .. +
156.0 131.0 1.9 7.2 2.0 7.1 + .. .. +
173.0 163.5 3.0 9.0 ... ... .. .. .. ..
190.0 175.0 2.9 7.7 2.1 7.8 .. + + ..
223.0 162.0 2.9 10.5 3.0 9.1 + .. .. +
235.0 190.0 4.2 10.0 3.8 12.0 .. + + ..
260.0 213.0 3.6 11.1 4.0 11.4 .. + .. +
272.0 213.0 3.0 10.0 3.5 9.2 + .. .. +
305.0 238.0 3.0 9.9 3.9 10.9 .. + .. +
347.0 ... 3.5 10.8 4.9 8.5 + .. .. +
355.0 273.0 4.0 14.0 5.2 9.9 + .. .. +
386.0 324.0 5.1 11.5 3.0 9.9 + .. + ..
402.0 301.0 5.05 10.5 3.0 12.0 .. + + ..
3 weeks ... 5.0 17.0 5.0 14.0 + ..
6 weeks ... 7.5 15.0 7.0 14.7 + .. + ..
6 weeks ... 7.0 18.0 8.0 17.0 + .. .. +
10 weeks ... ... 14.0 ... 16.0 + ..
2 months ... 6.0 14.5 4.0 13.0 + .. + ..
3 months ... 6.0 15.5 5.0 14.7 + .. + ..
7 months ... 5.9 15.5 4.5 18.1 .. + + ..
15 months ... 9.0 18.0 9.0 19.5 + ..
I.75 years ... 7.0 20.0 8.5 15.0 + .. .. +
4 years ... 10.0 27.0 12.7 23.2 + .. .. +
5.5 years ... 11.1 29.0 9.1 26.1 + .. + ..
14 years ... 11.9 26.5 12.0 29.5 .. + .. +
The measurements are all given in millimeters, breech length is measured along the nape and the back.
    Links: 1912 Ovary Growth | Table Ovary Growth Table | Collapsible Table | Ovary Development
Table showing the Growth of the Ovary  
Vertex-breech
length
Greatest diam.
of head
Right Ovary Left Ovary Comparison between
Breadth Length Breadth Length Length Breadth
R. L. R. L.
50.0 42.6 0.9 1.9 0.9 2.5 .. +
125.0 123.0 1.2 5.9 1.5 4.1 + .. .. +
138.0 115.0 1.6 5.0 2.0 5.0 .. +
156.0 131.0 1.9 7.2 2.0 7.1 + .. .. +
173.0 163.5 3.0 9.0 ... ... .. .. .. ..
190.0 175.0 2.9 7.7 2.1 7.8 .. + + ..
223.0 162.0 2.9 10.5 3.0 9.1 + .. .. +
235.0 190.0 4.2 10.0 3.8 12.0 .. + + ..
260.0 213.0 3.6 11.1 4.0 11.4 .. + .. +
272.0 213.0 3.0 10.0 3.5 9.2 + .. .. +
305.0 238.0 3.0 9.9 3.9 10.9 .. + .. +
347.0 ... 3.5 10.8 4.9 8.5 + .. .. +
355.0 273.0 4.0 14.0 5.2 9.9 + .. .. +
386.0 324.0 5.1 11.5 3.0 9.9 + .. + ..
402.0 301.0 5.05 10.5 3.0 12.0 .. + + ..
3 weeks ... 5.0 17.0 5.0 14.0 + ..
6 weeks ... 7.5 15.0 7.0 14.7 + .. + ..
6 weeks ... 7.0 18.0 8.0 17.0 + .. .. +
10 weeks ... ... 14.0 ... 16.0 + ..
2 months ... 6.0 14.5 4.0 13.0 + .. + ..
3 months ... 6.0 15.5 5.0 14.7 + .. + ..
7 months ... 5.9 15.5 4.5 18.1 .. + + ..
15 months ... 9.0 18.0 9.0 19.5 + ..
I.75 years ... 7.0 20.0 8.5 15.0 + .. .. +
4 years ... 10.0 27.0 12.7 23.2 + .. .. +
5.5 years ... 11.1 29.0 9.1 26.1 + .. + ..
14 years ... 11.9 26.5 12.0 29.5 .. + .. +
The measurements are all given in millimeters, breech length is measured along the nape and the back.
Reference: Felix W. The development of the urinogenital organs. In Keibel F. and Mall FP. Manual of Human Embryology II. (1912) J. B. Lippincott Company, Philadelphia. pp 752-979.
    Links: 1912 Ovary Growth | Table Ovary Growth Table | Collapsible Table | Ovary Development

Postnatal Growth

Human ovary postnatal growth.jpg

Human ovary postnatal volume growth[18]

Corpus Luteum

Human ovary with corpus luteum (white ring).

The corpus luteum (Latin, corpus = body, luteum = yellow) develops from the remains of Graffian follicle after ovulation. Functions as an endocrine organ (produce progesterone and oestrogens) supporting pregnancy and preventing menstruation (loss of the endometrial lining). Formed during the luteal phase (secretory phase) of the menstrual cycle by proliferation of both follicular granulosa cells (granulosa lutein cells) and thecal cells (theca lutein cells), which together interact to produce progesterone and oestrogens.

Peak luteal function during the menstrual cycle, determined by maximum luteal area, progesterone concentration and estradiol concentration, is observed about 6 days following ovulation.[19]

If fertilization and pregnancy does not occur, the corpus luteum degenerates to form the corpus albicans.

History

  • Regnier de Graaf (1641 – 1673) was the first observer in the ovary of a cow as a yellow structure, the yellow colour was caused by accumulation of steroidal hormones.
  • Ludwig Fraenkel (1870 - 1951) first identified the endocrine function of the corpus luteum.[20]

Embryo Virtual Slide

Human Ovary and Corpus Luteum

Human ovary - corpus luteum 01.jpg

 ‎‎Mobile | Desktop | Original

Ovary | Embryo Slides
Corpus Luteum Links: anatomy overview | image - histology overview | image - Layers granulosa and theca | image - Layers detail granulosa and theca | image - low power label | image - high power label | image - low power | image - high power | image - corpus albicans | theca and granulosa lutein cells | Granulosa cell | corpus luteum | granulosa lutein cells | theca lutein cells | corpus albicans | ovary | menstrual cycle
  Historic Papers: 1969 corpus luteum ultrastructure 1 | 1969 corpus luteum ultrastructure 2

Corpus Albicans

Human ovary with corpus albicans (white arrow).

Ovary histology 003.jpg

Corpus albicans histology

(corpora albicantia) (Latin, corpus = body, albicans = whitish) The histological structure formed by luteolysis of the corpus luteum in the ovary. If implantation does not occur and the hormone hCG is not released the corpus luteum degenerates and the structure is white, not yellow, because of the absence of steroid hormone synthesis/accumulation.


Corpus Luteum Links: anatomy overview | image - histology overview | image - Layers granulosa and theca | image - Layers detail granulosa and theca | image - low power label | image - high power label | image - low power | image - high power | image - corpus albicans | theca and granulosa lutein cells | Granulosa cell | corpus luteum | granulosa lutein cells | theca lutein cells | corpus albicans | ovary | menstrual cycle
  Historic Papers: 1969 corpus luteum ultrastructure 1 | 1969 corpus luteum ultrastructure 2

Animal Models

Bovine Ovary

Ovarian development model.jpg



Links: Bovine Development
Ovarian Development Model[21]
  • A - The development of the ovary commences at the mesonephric surface epithelium (yellow cells) in the location of the future gonadal ridge.
  • B - Some mesonephric surface epithelial cells change phenotype into GREL (Gonadal Ridge Epithelial-Like) cells (yellow-blue cells).
  • C - The GREL cells proliferate and the basal lamina underlying the mesonephric surface epithelium breaks down allowing stromal cells (green) to penetrate into the gonadal ridge.
  • D - GREL cells continue to proliferate and PGCs (grey) migrate into the ridge between the GREL cells. Mesonephric stroma including vasculature (red) continues to penetrate and expand in the ovary.
  • E - Oogonia proliferate and stroma penetrates further towards the ovarian surface enclosing oogonia and GREL cells into ovigerous cords. The cords are surrounded by a basal lamina at their interface with stroma, but are open to the ovarian surface. Stromal areas including those between the ovigerous cords contain capillaries.
  • F - A compartmentalization into cortex and medulla becomes obvious. The cortex is characterised by alternating areas of ovigerous cords and stroma, whereas the medulla is formed by stromal cells, vasculature and tubules originating from the mesonephros (rete ovarii). Once stroma penetrates below the cells on the surface it spreads laterally. The GREL cells at the surface are then aligned by a basal lamina at their interface with the stroma and begin to differentiate into typical ovarian surface epithelium (yellow cells). Some germ cells at the surface are also compartmentalized to the surface as stroma expands below it.
  • G - Ovigerous cords are partitioned into smaller cords and eventually into follicles. These contain GREL cells that form granulosa cells (blue cells) and oogonia that form oocytes. The first primordial follicles appear in the inner cortex-medulla region, surrounded by a basal lamina. A now fully intact basal lamina underlies multiple layers of surface epithelial cells.
  • H - At the final stage the surface epithelium becomes mostly single-layered and a tunica albuginea, densely packed with fibres, develops from the stroma below the surface epithelial basal lamina. Some primordial follicles become activated and commence development into primary and preantral follicles.

Histology

Ovary histology: Tunica Albuginea x20 | Tunica albuginea, Germinal epithelium x40 | Primary follicle, primordial follicle, oocyte, x40 | Secondary follicle, cumulus oophorus, zona pelucida, granulosa cells, oocyte x20 | Corpus luteum, theca lutein cells, granulosa lutein cells, Loupe | Corpus luteum, theca lutein cells, granulosa lutein cells, x10 | Corpus luteum, theca lutein cells, granulosa lutein cells, x40 | Corpus albicans, primary follicle, primordial follicle, granulosa cells, oocyte x20 | Menstrual Cycle | Ovary Development

Abnormalities

See also Genital System - Abnormalities

Female Infertility Genes

Selected Female Infertility Genes
Gene abbreviation Name Gene Location Online Mendelian
Inheritance in Man (OMIM)
HUGO Gene Nomenclature
Committee (HGNC)
GeneCards (GCID) Diagnosis
BMP15 Bone morphogenetic protein 15 Xp11.22 300247 1068 GC0XP050910 Primary ovarian insufficiency
CLPP Caseinolytic mitochondrial matrix peptidase proteolytic subunit 19p13.3 601119 2084 GC19P006369 Primary ovarian insufficiency
EIF2B2 Eukaryotic translation initiation factor 2B subunit beta 14q24.3 606454 3258 GC14P075002 Primary ovarian insufficiency
FIGLA Folliculogenesis-specific BHLH transcription factor 2p13.3 608697 24669 GC02M070741 Primary ovarian insufficiency
FMR1 Fragile X mental retardation 1 Xq27.3 309550 3775 GC0XP147912 Primary ovarian insufficiency
FOXL2 Forkhead box L2 3q22.3 605597 1092 GC03M138944 Primary ovarian insufficiency
FSHR Follicle stimulating hormone receptor 2p16.3 136435 3969 GC02M048866 Primary ovarian insufficiency
GALT Galactose-1-phosphate uridylyltransferase 9p13.3 606999 4135 GC09P034636 Primary ovarian insufficiency
GFD9 Growth differentiation factor 9 5q31.1 601918 4224 GC05M132861 Primary ovarian insufficiency
HARS2 Histidyl-TRNA synthetase 2, mitochondrial 5q31.3 600783 4817 GC05P141975 Primary ovarian insufficiency
HFM1 HFM1, ATP-dependent DNA helicase homolog 1p22.2 615684 20193 GC01M091260 Primary ovarian insufficiency
HSD17B4 Hydroxysteroid 17-beta dehydrogenase 4 5q23.1 601860 5213 GC05P119452 Primary ovarian insufficiency
LARS2 Leucyl-TRNA synthetase 2, mitochondrial 3p21.31 604544 17095 GC03P045405 Primary ovarian insufficiency
LHCGR Luteinizing hormone/choriogonadotropin receptor 2p16.3 152790 6585 GC02M048647 Primary ovarian insufficiency
LHX8 LIM homeobox 8 1p31.1 604425 28838 GC01P075128 Primary ovarian insufficiency
MCM8 Minichromosome maintenance 8 homologous recombination repair factor 20p12.3 608187 16147 GC20P005926 Primary ovarian insufficiency
MCM9 Minichromosome maintenance 9 homologous recombination repair factor 6q22.31 610098 21484 GC06M118813 Primary ovarian insufficiency
NOBOX NOBOX oogenesis homeobox 7q35 610934 22448 GC07M144397 Primary ovarian insufficiency
NOG Noggin 17q22 602991 7866 GC17P056593 Primary ovarian insufficiency
PMM2 Phosphomannomutase 2 16p13.2 601785 9115 GC16P008788 Primary ovarian insufficiency
POLG DNA polymerase gamma, catalytic subunit 15q26.1 174763 9179 GC15M089316 Primary ovarian insufficiency
REC8 REC8 meiotic recombination protein 14q12 608193 16879 GC14P024171 Primary ovarian insufficiency
SMC1B Structural maintenance of chromosomes 1B 22q13.31 608685 11112 GC22M045344 Primary ovarian insufficiency
SOHLH1 Spermatogenesis and oogenesis-specific basic helix–loop–helix 1 9q34.3 610224 27845 GC09M135693 Primary ovarian insufficiency
STAG3 Stromal antigen 3 7q22.1 {{Chr 608489 11356 GC07P100177 Primary ovarian insufficiency
SYCE1 Synaptonemal Complex Central Element Protein 1 10q26.3 611486 28852 GC10M133553 Primary ovarian insufficiency
TLE6 Transducin-like enhancer of split 6 19p13.3 612399 30788 GC19P002976 Embryonic lethalithy
TUBB8 Tubulin beta 8 Class VIII 10p15.3 616768 20773 GC10M000048 Oocyte maturation arrest
TWNK Twinkle MtDNA helicase 10q24.31 606075 1160 GC10P100991 Primary ovarian insufficiency
  Table data source[22] (table 1)    Links: fertilization | oocyte | ovary | | Female Infertility Genes | spermatozoa | testis | Male Infertility Genes | Genetic Abnormalities | ART

 Primary ovarian insufficiency - depletion or dysfunction of ovarian follicles with cessation of menses before age 40 years.
 Oocyte maturation arrest - arrest of human oocytes may occur at different stages of meiosis.

International Classification of Diseases

Polycystic Ovary Syndrome

Mouse ovary normal and polycystic ovary syndrome model.[23]

International Classification of Diseases - E28.2 Polycystic ovarian syndrome.

Polycystic ovary syndrome (PCOS) or Stein-Leventhal syndrome (1930s researchers) clinical term for a metabolic hormone syndrome leading to anovulation and with many other symptoms (hyperandrogenism, insulin resistance) and is one of the most common forms of female infertility, see reviews.[24][25] Using the European Society for Human Reproduction and Embryology/American Society for Reproductive Medicine criteria, about 15% - 20% of women suffer from this disease. Ovarian cysts arise through incomplete follicular development or failure of ovulation (anovulation). A range of drugs has been used to induce ovulation in these women and more recently in vitro maturation (IVM) has also been suggested as a possible future technique. Androgen has been recently identified as a key mediator in the development of polycystic ovary syndrome.[26]


In December 2012, the NIH held a workshop on "Evidence-based Methodology on Polycystic Ovary Syndrome". PCOS is a common disorder affecting 5 million women of reproductive-age in the United States. Symptoms include: irregular or no menstrual periods in women of reproductive age (ovulatory dysfunction), acne, weight gain, excess hair growth on the face and body (hirsutism), thinning scalp hair, ovarian cysts (polycystic ovarian morphology) and mental health problems.

One key workshop finding was that the name "Polycystic Ovary Syndrome" is inappropriate for defining the condition and should be renamed to reflect the complex metabolic, hypothalamic, pituitary, ovarian, and adrenal interactions that characterize the syndrome and their reproductive implications.

  • Androgen Excess + Ovulatory Dysfunction
  • Androgen Excess + Polycystic Ovarian Morphology
  • Ovulatory Dysfunction + Polycystic Ovarian Morphology
  • Androgen Excess + Ovulatory Dysfunction + Polycystic Ovarian Morphology

Recurrent pregnancy loss also occurs in about 50% of total pregnancies with polycystic ovary syndrome.[27]


A recent study in the Han Chinese population[28] identified associations between PCOS and three genetic loci: 2p16.3, 2p21 and 9q33.3.

Introduction to PCOS

<html5media width="480" height="360">https://www.youtube.com/embed/NhyYZCBq5A8</html5media>



Links: menstrual cycle | genital abnormalities | endocrine abnormalities | 2012 NIH Workshop on PCOS | 2011 Australia Guideline assessment and management PCOS | OMIM 184700]


Premature Ovarian Failure

Premature Ovarian Failure (POF)[29] a clinical term describes the absence of normal ovarian function due to the depletion of the primordial follicle pool before 40 years of age a range of factors (autoimmune, iatrogenic, infections, genetic defects). Primary ovarian insufficiency (POI) occurs in approximately 1% of women below 40 years of age.

Premature Ovarian Failure (POF) can be primary or secondary based on puberty.

  • primary - absence of puberty, development and primary amenorrhea, generally caused by ovarian dysgenesis (45XO, Turner syndrome, Monosomy X).
  • secondary - normal puberty, usually present with the later disappearance of menstrual cycles.


Search PubMed: Premature Ovarian Failure

Ovarian Cancer

Ovarian cancer (Template:ICD–10 C56) is a major cause of death in the postnatal female population.[30][31][32] Both BRCA1 and BRCA2 genes are high-risk genes of ovarian cancer. A recent mouse study has also identified a population of stem cells located at the hilum region of the ovary that are prone to epithelial ovarian cancer.[33]

In Australia, ovarian cancer was in 2014 the 8th most commonly diagnosed cancer among females and 2018 estimate is that it will become the 10th most commonly diagnosed cancer among females.[34]


Luteoma of Pregnancy

Luteoma of pregnancy is a rare non-neoplastic tumor-like mass of the ovary that emerges during pregnancy and regresses spontaneously after delivery. Luteomas can be hormonally active producing androgens that can result in maternal and fetal hirsutism and virilization.


Image: Dr Ed Uthman (Houston, Texas) - other pathology images


References

  1. Meseke M, Pröls F, Schmahl C, Seebo K, Kruse C, Brandt N, Fester L, Zhou L, Bender R & Rune GM. (2018). Reelin and aromatase cooperate in ovarian follicle development. Sci Rep , 8, 8722. PMID: 29880879 DOI.
  2. Escobar-Morreale HF. (2018). Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol , 14, 270-284. PMID: 29569621 DOI.
  3. Bothun A, Gao Y, Takai Y, Ishihara O, Seki H, Karger B, Tilly J & Woods DC. (2018). Quantitative proteomic profiling of the human ovary from early to mid-gestation reveals protein expression dynamics of oogenesis and folliculogenesis. Stem Cells Dev. , , . PMID: 29631484 DOI.
  4. Walters KA & Handelsman DJ. (2017). Role of androgens in the ovary. Mol. Cell. Endocrinol. , , . PMID: 28687450 DOI.
  5. Müller A, Keller K, Wacker J, Dittrich R, Keck G, Montag M, Van der Ven H, Wachter D, Beckmann MW & Distler W. (2012). Retransplantation of cryopreserved ovarian tissue: the first live birth in Germany. Dtsch Arztebl Int , 109, 8-13. PMID: 22282711 DOI.
  6. Baillet A & Mandon-Pepin B. (2012). Mammalian ovary differentiation - a focus on female meiosis. Mol. Cell. Endocrinol. , 356, 13-23. PMID: 21964319 DOI.
  7. Tomaselli S, Megiorni F, Lin L, Mazzilli MC, Gerrelli D, Majore S, Grammatico P & Achermann JC. (2011). Human RSPO1/R-spondin1 is expressed during early ovary development and augments β-catenin signaling. PLoS ONE , 6, e16366. PMID: 21297984 DOI.
  8. Childs AJ, Cowan G, Kinnell HL, Anderson RA & Saunders PT. (2011). Retinoic Acid signalling and the control of meiotic entry in the human fetal gonad. PLoS ONE , 6, e20249. PMID: 21674038 DOI.
  9. 9.0 9.1 Wallace WH & Kelsey TW. (2010). Human ovarian reserve from conception to the menopause. PLoS ONE , 5, e8772. PMID: 20111701 DOI.
  10. Heeren AM, He N, de Souza AF, Goercharn-Ramlal A, van Iperen L, Roost MS, Gomes Fernandes MM, van der Westerlaken LA & Chuva de Sousa Lopes SM. (2016). On the development of extragonadal and gonadal human germ cells. Biol Open , 5, 185-94. PMID: 26834021 DOI.
  11. Hultén MA, Patel S, Jonasson J & Iwarsson E. (2010). On the origin of the maternal age effect in trisomy 21 Down syndrome: the Oocyte Mosaicism Selection model. Reproduction , 139, 1-9. PMID: 19755486 DOI.
  12. Orisaka M, Tajima K, Tsang BK & Kotsuji F. (2009). Oocyte-granulosa-theca cell interactions during preantral follicular development. J Ovarian Res , 2, 9. PMID: 19589134 DOI.
  13. Hertig AT. and Adams EC. Studies on the human oocyte and its follicle. I. Ultrastructural and histochemical observations on the primordial follicle stage. (1967) J Cell Biol. 34(2):647-75. PMID 4292010
  14. Griffin J, Emery BR, Huang I, Peterson CM & Carrell DT. (2006). Comparative analysis of follicle morphology and oocyte diameter in four mammalian species (mouse, hamster, pig, and human). J. Exp. Clin. Assist. Reprod. , 3, 2. PMID: 16509981 DOI.
  15. Garcia-Ortiz JE, Pelosi E, Omari S, Nedorezov T, Piao Y, Karmazin J, Uda M, Cao A, Cole SW, Forabosco A, Schlessinger D & Ottolenghi C. (2009). Foxl2 functions in sex determination and histogenesis throughout mouse ovary development. BMC Dev. Biol. , 9, 36. PMID: 19538736 DOI.
  16. Wilhelm D, Palmer S & Koopman P. (2007). Sex determination and gonadal development in mammals. Physiol. Rev. , 87, 1-28. PMID: 17237341 DOI.
  17. Felix W. The development of the urinogenital organs. In Keibel F. and Mall FP. Manual of Human Embryology II. (1912) J. B. Lippincott Company, Philadelphia. pp 752-979.
  18. Khadilkar VV, Khadilkar AV, Kinare AS, Tapasvi HS, Deshpande SS & Maskati GB. (2006). Ovarian and uterine ultrasonography in healthy girls between birth to 18 years. Indian Pediatr , 43, 625-30. PMID: 16891683
  19. Baerwald AR, Adams GP & Pierson RA. (2005). Form and function of the corpus luteum during the human menstrual cycle. Ultrasound Obstet Gynecol , 25, 498-507. PMID: 15846762 DOI.
  20. Simmer HH. (1971). The first experiments to demonstrate an endocrine function of the corpus luteum. On the occasion of the 100th birthday of Ludwig Fraenkel (1870-1951). Sudhoffs Arch , 55, 392-417. PMID: 4261581
  21. Hummitzsch K, Irving-Rodgers HF, Hatzirodos N, Bonner W, Sabatier L, Reinhardt DP, Sado Y, Ninomiya Y, Wilhelm D & Rodgers RJ. (2013). A new model of development of the mammalian ovary and follicles. PLoS ONE , 8, e55578. PMID: 23409002 DOI.
  22. Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, Geraedts J, Gianaroli L, Ketterson K, Liebaers I, Lundin K, Mertes H, Morris M, Pennings G, Sermon K, Spits C, Soini S, van Montfoort APA, Veiga A, Vermeesch JR, Viville S & Macek M. (2018). Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur. J. Hum. Genet. , 26, 12-33. PMID: 29199274 DOI.
  23. Yaba A & Demir N. (2012). The mechanism of mTOR (mammalian target of rapamycin) in a mouse model of polycystic ovary syndrome (PCOS). J Ovarian Res , 5, 38. PMID: 23185989 DOI.
  24. Sirmans SM & Pate KA. (2013). Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin Epidemiol , 6, 1-13. PMID: 24379699 DOI.
  25. Azziz R & Adashi EY. (2016). Stein and Leventhal: 80 years on. Am. J. Obstet. Gynecol. , 214, 247.e1-247.e11. PMID: 26704896 DOI.
  26. Caldwell ASL, Edwards MC, Desai R, Jimenez M, Gilchrist RB, Handelsman DJ & Walters KA. (2017). Neuroendocrine androgen action is a key extraovarian mediator in the development of polycystic ovary syndrome. Proc. Natl. Acad. Sci. U.S.A. , 114, E3334-E3343. PMID: 28320971 DOI.
  27. Chakraborty P, Goswami SK, Rajani S, Sharma S, Kabir SN, Chakravarty B & Jana K. (2013). Recurrent pregnancy loss in polycystic ovary syndrome: role of hyperhomocysteinemia and insulin resistance. PLoS ONE , 8, e64446. PMID: 23700477 DOI.
  28. Chen ZJ, Zhao H, He L, Shi Y, Qin Y, Shi Y, Li Z, You L, Zhao J, Liu J, Liang X, Zhao X, Zhao J, Sun Y, Zhang B, Jiang H, Zhao D, Bian Y, Gao X, Geng L, Li Y, Zhu D, Sun X, Xu JE, Hao C, Ren CE, Zhang Y, Chen S, Zhang W, Yang A, Yan J, Li Y, Ma J & Zhao Y. (2011). Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. , 43, 55-9. PMID: 21151128 DOI.
  29. Beck-Peccoz P & Persani L. (2006). Premature ovarian failure. Orphanet J Rare Dis , 1, 9. PMID: 16722528 DOI.
  30. Muinao T, Pal M & Deka Boruah HP. (2018). Origins based clinical and molecular complexities of epithelial ovarian cancer. Int. J. Biol. Macromol. , 118, 1326-1345. PMID: 29890249 DOI.
  31. Wilson MK, Mercieca-Bebber R & Friedlander M. (2018). A practical guide to understanding, using and including patient reported outcomes in clinical trials in ovarian cancer. J Gynecol Oncol , 29, e81. PMID: 30022641 DOI.
  32. Tajik P, van de Vrie R, Zafarmand MH, Coens C, Buist MR, Vergote I, Bossuyt PMM & Kenter GG. (2018). The FIGO Stage IVA Versus IVB of Ovarian Cancer: Prognostic Value and Predictive Value for Neoadjuvant Chemotherapy. Int. J. Gynecol. Cancer , 28, 453-458. PMID: 29324537 DOI.
  33. Flesken-Nikitin A, Hwang CI, Cheng CY, Michurina TV, Enikolopov G & Nikitin AY. (2013). Ovarian surface epithelium at the junction area contains a cancer-prone stem cell niche. Nature , 495, 241-5. PMID: 23467088 DOI.
  34. AIHW Web report - Cancer compendium: information and trends by cancer type (2018). ovarian cancer

Reviews

Cox E & Whitten R. (2018). Embryology, Ovarian Follicle Development. , , . PMID: 30335333

Escobar-Morreale HF. (2018). Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol , 14, 270-284. PMID: 29569621 DOI.

Nef S & Vassalli JD. (2009). Complementary pathways in mammalian female sex determination. J. Biol. , 8, 74. PMID: 19735582 DOI.

Hultén MA, Patel S, Jonasson J & Iwarsson E. (2010). On the origin of the maternal age effect in trisomy 21 Down syndrome: the Oocyte Mosaicism Selection model. Reproduction , 139, 1-9. PMID: 19755486 DOI.

Articles

Lin HA, Dutta R, Mandal S, Kind A, Schnieke A & Razansky D. (2016). Advancing ovarian folliculometry with selective plane illumination microscopy. Sci Rep , 6, 38057. PMID: 27905503 DOI.

Duffin K, Bayne RA, Childs AJ, Collins C & Anderson RA. (2009). The forkhead transcription factor FOXL2 is expressed in somatic cells of the human ovary prior to follicle formation. Mol. Hum. Reprod. , 15, 771-7. PMID: 19706741 DOI.

Search Pubmed

Search Pubmed: Ovary Development | Follicle Development | Follicle Atresia

Books

Leung P. and Adashi E. The Ovary (2019) 3rd Edn eBook ISBN: 9780128132104 Hardcover ISBN: 9780128132098 Academic Press.

  1. The Ovarian Follicular Apparatus: Operational Characteristics
  2. Oocyte Maturation and Ovulation
  3. The Corpus Luteum
  4. Novel Experimental Models
  5. Human Ovarian Pathophysiology: Select Aspects
  6. Human Ovarian Cancer

Gilbert SF. Developmental Biology. (2000) 6th edn. Sunderland (MA): Sinauer Associates.

  1. oogenesis

Additional Images

Historic Images

Historic Disclaimer - information about historic embryology pages 
Mark Hill.jpg
Pages where the terms "Historic" (textbooks, papers, people, recommendations) appear on this site, and sections within pages where this disclaimer appears, indicate that the content and scientific understanding are specific to the time of publication. This means that while some scientific descriptions are still accurate, the terminology and interpretation of the developmental mechanisms reflect the understanding at the time of original publication and those of the preceding periods, these terms, interpretations and recommendations may not reflect our current scientific understanding.     (More? Embryology History | Historic Embryology Papers)

Terms

Oocyte Development

Note there are additional specific term glossaries available listed at bottom of this table.

  • antral follicle - (secondary) the stage following preantral in the decription of the sequence ovarian follicle development.
  • antrum - (L. a cave), cavity; a nearly-closed cavity or bulge. In the ovary this refers to the follicular fluid-filled space within the follicle.
  • atretic follicle - An ovarian follicle that fails to mature and degenerates. Also called "atresia" refering to the process of degeneration of the ovarian follicle. This process can occur at any stage of follicle development (folliculogenesis).
  • clomiphene citrate - drug taken orally to promote the process of follicle/egg maturation.
  • COCs - (cumulus-oocyte complexes) term used in Assisted Reproductive Technology to describe the ovulated Graafian follicle consisting of the oocyte surrounded by a packed layers of cumulus cells.
  • corona radiata - Layer of follicle cells of cumulus oophorus remaining directly attached to zona pellucida of the oocyte. These cells communicate with the oocyte through the zone pellucida, also called granulosa cells.
  • corpus albicans - (L. corpus = body, L. albicans = whitish); a degenerating corpus luteum in ovary.
  • corpus luteum - (L. corpus = body, L. luteum = yellow) The remains of the ovulating ovarian follicle after ovulation, that acts as the initial endocrine organ supporting pregnancy and preventing menstruation (loss of the endometrial lining). de Graaf first observed it in the ovary of a cow as a yellow structure.
  • cortical - (L. corticalis) at the outside (like the bark of a tree), usually combined with medulla meaning the core.
  • cumulus oophorus - (L. cumulus = a little mound G. oon = egg + phorus = bearing); part of the wall of an ovarian follicle surrounding and carrying the ovum (oocyte).
  • first polar body - a small cytoplasmic exclusion body contains the excess DNA from the oocyte meiosis formed during meiosis 1.
  • follicle - (L. folliculus = little bag,dim. of L. follis). A structure which develops in the ovary and contains a developing egg (oocyte).
  • follicle stimulating hormone - (FSH, gonadotropin) A glycoprotein hormone secreted by anterior pituitary (adenohypophysis gonadotrophs, a subgroup of basophilic cells) and acts on gametogenesis and other systems in both males and females. Females, FSH acts on the ovary to stimulate follicle development. Males, acts on the testis Sertoli cells to increase androgen-binding protein (ABP) that binds androgens and has a role in spermatogenesis. pituitary
  • follicular fluid - the fluid found in the antrum of a secondary follicle. Secreted by cells in the wall of the follicle. This fluid is released along with the oocyte at ovulation.
  • germinal epithelium - cellular component covering surface of ovary, it is continuous with mesothelium covering mesovarium. Note that it is a historical misnomer, as it is not the actual site of germ cell formation.
  • Graafian follicle - named after Regnier de Graaf (1641-1673), an historic Dutch physician embryologist who studied pregnancy using rabbits.
  • granulosa cells - the supporting cells that surround the developing egg within the follicle thecal layers.
  • homologs - maternal and paternal homologous chromosomes.
  • Izumo1 - a protein located on the equatorial segment of acrosome-reacted spermatozoa recognizes its receptor Juno, on the oocyte surface, for plasma membrane binding and fusion. Named for a Japanese shrine dedicated to marriage. OMIM609278
  • Juno - (folate receptor-δ; FOLR-δ) a glycophosphatidylinositol (GPI)-anchored, cysteine-rich glycoprotein on the oocyte surface for fertilisation that is the receptor of Izumo1 on the spermatozoa, for plasma membrane binding and fusion. OMIM615737
  • luteinizing hormone - (LH, gonadotropin, lutropin, Interstitial Cell Stimulating Hormone, ICSH) glycoprotein hormone releasd from anterior pituitary hormone that acts on the gonad and has a role in male and female reproduction. Female, LH triggers ovulation (release of the oocyte). Male, LH stimulates testis interstital cell (Leydig cell) production of testosterone. Have been used clinically in humans for the treatment of female infertility.
  • meiosis - oocyte reductive (diploid to haploid) cell division, with 1 round of DNA replication is followed by 2 rounds of chromosome segregation. The process beginning in the fetus and only completed at fertilization.
  • mesovarium - mesentry of the ovary formed from a fold of the broad ligament that attaches the ovary.
  • medullary - (L. medius = in the middle) relating to the medulla; pith, marrow, inner portion of an organ. Usually combined with cortex (cortical) meaning the outer layer.
  • oocyte - (Greek, oo = egg, ovum) The term used to describe the haploid egg or ovum formed within the ovary (female gonad) and released to enter the uterine tube and be transported to the uterus. The mature oocyte is the cell released from the ovary during ovulation.
  • oogenesis - (Greek, oo = egg + genesis = origin, creation, generation) process of diploid oogonia division and differentiation into an haploid oocyte (egg) within the ovary (female gonad). Mammalian meiosis will only be completed within the oocyte if fertilization occurs.
  • oogonia - (Greek, oo = egg) diploid germ cells within the ovary (female gonad) which provide the primary oocytes for oocyte (egg) formation. In humans, all oogonia form primary oocytes within the ovary before birth.
  • oolemma - (zona pellucida, vitelline membrane).
  • oophorus - (Greek, oo = egg + phorus = carrying, egg-bearing) cumulus oophorus, used to describe the granulosa cells within the follicle that tether or link the oocyte to the wall of the follicle.
  • ovarian reserve - Clinical term for the number of oocytes (non-growing follicles) available for possible fertilization at the different times during female reproductive life. A blood test for Anti-Mullerian Hormone (AMH) levels is used clinically as a measure of the ovarian reserve. human graph
  • ovastacin - an oocyte released enzyme following fertilization that cleaves ZP2 protein to prevent polyspermy.
  • ovulation - release of the oocyte from the mature follicle. In humans generally a single oocyte is released from a cohort of several maturing follicles.
  • ovum - oocyte, note that historically this same term was also used to describe the early stages following fertilisation.
  • polar body - small cytoplasmic exclusion body contains the excess DNA from the oocyte meiosis reductive division. The first polar body formed during meiosis 1, the second and sometimes third polar bodies are formed from meiosis 2 at fertilization.
  • polyspermy - abnormal fertilization by more that a single spermatozoa, may generate a hydatidiform mole.
  • preantral follicle - (primary) the stage following primordial in the description of the sequence ovarian follicle development.
  • primary follicle - (preantral) the stage following primordial in the description of the sequence ovarian follicle development.
  • primordial follicle - the first stage in the description of the sequence ovarian follicle development. Present in the ovary from birth, located in the stroma of the ovary cortex beneath the tunica albuginea. The primordial follicle is the oocyte and the surrounding follicular cells.
  • primordial germ cell - oocyte present in the primordial follicle ovary from birth, located in the stroma of the ovary cortex beneath the tunica albuginea. The primordial follicle is the oocyte and the surrounding follicular cells.
  • second polar body - a small cytoplasmic exclusion body contains the excess DNA from the oocyte formed during meiosis 2 at fertilization.
  • secondary follicles - the stage following primary in the description of the sequence ovarian follicle development.
  • stromal cells - in the ovary, cells surrounding the developing follicle that form a connective tissue sheath (theca folliculi). This layer then differentiates into 2 layers (theca interna, theca externa). This region is richly vascularized and involved in hormone secretion.
  • superovulation therapy - a fertility drug treatement (oral clomiphene citrate and/or injectable FSH with or without LH) aimed at stimulating development/release of more than one follicle during a single menstrual cycle.
  • tertiary follicle - (preovulatory, Graffian) the stage following secondary in the description of the sequence ovarian follicle development.
  • theca folliculi - stromal cells in the ovary, cells surrounding the developing follicle that form a connective tissue sheath. This layer then differentiates into 2 layers (theca interna, theca externa). This region is vascularized and involved in hormone secretion.
  • theca externa - stromal cells forming the outer layer of the theca folliculi surrounding the developing follicle. Consisting of connective tissue cells, smooth muscle and collagen fibers.
  • theca interna - stromal cells forming the inner layer of the theca folliculi surrounding the developing follicle. This vascularized layer of cells respond to LH (leutenizing hormone) synthesizing and secreting androgens which are processed into estrogen.
  • transzonal projection - (TZP) ovarian follicle term describing the cellular membraneous extension from the granulosa cell through the zona pellucida to the oocyte cell membrane where it forms gap junctions or adherens junctions allowing signalling and adhesion between the two cells.
  • tunica albuginea - dense connective tissue layer lying near the ovary surface, a layer of simple squamous to cuboidal epithelial covers this layer. A similar named structure is found in male genital system.
  • uterus - site of embryo implantation and development. Uterine wall has 3 major layers: endometrium, myometrium, and perimetrium. Endometrium can be further divided into the functional layer (shed/lost during menstruation) and basal layer (not lost during menstruation).
  • zinc sparks following fertilization the oocyte releases a burst of zinc atoms in brief bursts (zinc sparks) has a role in zonal pellucida induced structural changes (hardening) along with ovastacin cleavage of ZP2 protein.
  • zona hardening - following fertilization the structural changes that occur to the zona pellucida to prevents further spermatozoa binding acting as a block to polyspermy.
  • zona pellucida - extracellular layer lying directly around the oocyte underneath follicular cells. Has an important role in egg development, fertilization and blastocyst development. This thick extracellular matrix consists of glcosaminoglycans and 3 glycoproteins (ZP1, ZP2, ZP3). (More? Zona pellucida)
Other Terms Lists  
Terms Lists: ART | Birth | Bone | Cardiovascular | Cell Division | Endocrine | Gastrointestinal | Genital | Genetic | Head | Hearing | Heart | Immune | Integumentary | Neonatal | Neural | Oocyte | Palate | Placenta | Radiation | Renal | Respiratory | Spermatozoa | Statistics | Tooth | Ultrasound | Vision | Historic | Drugs | Glossary

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link
Genital Links: genital | Lecture - Medicine | Lecture - Science | Lecture Movie | Medicine - Practical | primordial germ cell | meiosis | endocrine gonad‎ | Genital Movies | genital abnormalities | Assisted Reproductive Technology | puberty | Category:Genital
Female | X | X inactivation | ovary | corpus luteum | oocyte | uterus | vagina | reproductive cycles | menstrual cycle | Category:Female
Male | Y | SRY | testis | spermatozoa | ductus deferens | penis | prostate | Category:Male
Historic Embryology - Genital 
General: 1901 Urinogenital Tract | 1902 The Uro-Genital System | 1904 Ovary and Testis | 1912 Urinogenital Organ Development | 1914 External Genitalia | 1921 Urogenital Development | 1921 External Genital | 1942 Sex Cords | 1953 Germ Cells | Historic Embryology Papers | Historic Disclaimer
Female: 1904 Ovary and Testis | 1904 Hymen | 1912 Urinogenital Organ Development | 1914 External Genitalia | 1914 Female | 1921 External Genital | 1927 Female Foetus 15 cm | 1927 Vagina | 1932 Postnatal Ovary
Male: 1887-88 Testis | 1904 Ovary and Testis | 1904 Leydig Cells | 1906 Testis vascular | 1909 Prostate | 1912 Prostate | 1914 External Genitalia | 1915 Cowper’s and Bartholin’s Glands | 1920 Wolffian tubules | 1935 Prepuce | 1935 Wolffian Duct | 1942 Sex Cords | 1943 Testes Descent | Historic Embryology Papers | Historic Disclaimer

| Menstrual Cycle | X Chromosome



Cite this page: Hill, M.A. (2024, March 28) Embryology Ovary Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Ovary_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G