Neural Crest - Schwann Cell Development

From Embryology
Revision as of 23:39, 9 June 2016 by Z8600021 (talk | contribs)
Embryology - 16 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Schwann cells wrap around nerve axon processes outside of the central nervous system. These cells in development originate from neural crest cells migrating out along the developing nerve fibers and these cells differentiate to form myelin sheaths that surround the mature nerve.


The cells are named after their original discoverer a German physiologist Theodor Schwann (1810 - 1882).

Myelination animation.gif

Myelination

Neural Crest Links: neural crest | Lecture - Early Neural | Lecture - Neural Crest Development | Lecture Movie | Schwann cell | adrenal | melanocyte | peripheral nervous system | enteric nervous system | cornea | cranial nerve neural crest | head | skull | cardiac neural crest | Nicole Le Douarin | Neural Crest Movies | neural crest abnormalities | Category:Neural Crest
Student Projects 2023: 1 Patterning neural border and NC | 2 NPB NEUcrest | 3 EMT and NC | 4 miRNA and NC | 5 Adrenal Gland and NC | 6 Melanocyte & Melanoma | 7 Neurocristopathies | Neural Crest
These projects are the sole work of undergraduate science students and may contain errors in fact or descriptions.


Historic Embryology - Neural Crest  
1879 Olfactory Organ | 1905 Cranial and Spinal Nerves | 1908 10 mm Peripheral | 1910 Mammal Sympathetic | 1920 Human Sympathetic | 1928 Cranial ganglia | 1939 10 Somite Embryo | 1942 Origin | 1957 Adrenal

Some Recent Findings

  • How Schwann Cells Sort Axons: New Concepts[1] "Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development."
  • Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin[2]"Current opinion holds that pigment cells, melanocytes, are derived from neural crest cells produced at the dorsal neural tube and that migrate under the epidermis to populate all parts of the skin. Here, we identify growing nerves projecting throughout the body as a stem/progenitor niche containing Schwann cell precursors (SCPs) from which large numbers of skin melanocytes originate. SCPs arise as a result of lack of neuronal specification by Hmx1 homeobox gene function in the neural crest ventral migratory pathway. Schwann cell and melanocyte development share signaling molecules with both the glial and melanocyte cell fates intimately linked to nerve contact and regulated in an opposing manner by Neuregulin and soluble signals including insulin-like growth factor and platelet-derived growth factor. These results reveal SCPs as a cellular origin of melanocytes, and have broad implications on the molecular mechanisms regulating skin pigmentation during development, in health and pigmentation disorders."
  • Neural crest origin of olfactory ensheathing glia[3] "Olfactory ensheathing cells (OECs) are a unique class of glial cells with exceptional translational potential because of their ability to support axon regeneration in the central nervous system. Although OECs are similar in many ways to immature and nonmyelinating Schwann cells, and can myelinate large-diameter axons indistinguishably from myelination by Schwann cells, current dogma holds that OECs arise from the olfactory epithelium. Here, using fate-mapping techniques in chicken embryos and genetic lineage tracing in mice, we show that OECs in fact originate from the neural crest and hence share a common developmental heritage with Schwann cells."

Schwann cell myelination

Schwann cell myelination and dedifferentiation.jpg

Schwann and axon interactions.jpg

Mouse-sciatic nerve Schwann cell.jpg

Mouse- spinal cord axons

Mouse- spinal cord axons.jpg

Schmidt-Lanterman cleft

Schmidt-Lanterman cleft cartoon.jpg

References

  1. <pubmed>25686621</pubmed>
  2. <pubmed>19837037</pubmed>
  3. <pubmed>21078992</pubmed>

Reviews

<pubmed>20454996</pubmed> <pubmed>20524961</pubmed> <pubmed>20142420</pubmed> <pubmed>19682631</pubmed>

Articles

<pubmed></pubmed>

Search PubMed

Search Dec 2010 "Schwann Cell Development" All (4257) Review (571) Free Full Text (851)


Search Pubmed: Schwann Cell Development | Schwann Cell | Schwann Myelination Development

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 16) Embryology Neural Crest - Schwann Cell Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Neural_Crest_-_Schwann_Cell_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G