Neural Crest - Enteric Nervous System

From Embryology
Revision as of 18:25, 4 May 2014 by Z8600021 (talk | contribs)
Embryology - 29 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Myenteric plexus of the gastrointestinal tract
Human embryo neural crest cells (stage 11)

The neural crest are bilaterally paired strips of cells arising in the ectoderm at the margins of the neural tube. These cells migrate to many different locations and differentiate into many cell types within the embryo. This means that many different systems (neural, skin, teeth, head, face, heart, adrenal glands, gastrointestinal tract) will also have a contribution fron the neural crest cells.


The enteric nervous system (ENS) regulates many key aspects of the gastrointestinal tract including: motility, secretion and blood flow. In the body region, neural crest cells form the entire enteric nervous system, both neurons and glia, of the gastrointestinal tract.


Neural crest cells initially migrate into the foregut splanchnic mesoderm of the developing gastrointestinal tract, these cells then migrate caudally along the gut into the midgut. A second population of sacral neural crest cells migrate to the region of the hindgut.


Neural Crest Links: neural crest | Lecture - Early Neural | Lecture - Neural Crest Development | Lecture Movie | Schwann cell | adrenal | melanocyte | peripheral nervous system | enteric nervous system | cornea | cranial nerve neural crest | head | skull | cardiac neural crest | Nicole Le Douarin | Neural Crest Movies | neural crest abnormalities | Category:Neural Crest
Student Projects 2023: 1 Patterning neural border and NC | 2 NPB NEUcrest | 3 EMT and NC | 4 miRNA and NC | 5 Adrenal Gland and NC | 6 Melanocyte & Melanoma | 7 Neurocristopathies | Neural Crest
These projects are the sole work of undergraduate science students and may contain errors in fact or descriptions.


Historic Embryology - Neural Crest  
1879 Olfactory Organ | 1905 Cranial and Spinal Nerves | 1908 10 mm Peripheral | 1910 Mammal Sympathetic | 1920 Human Sympathetic | 1928 Cranial ganglia | 1939 10 Somite Embryo | 1942 Origin | 1957 Adrenal

Intestine Development | Gastrointestinal Tract Development

Some Recent Findings

  • Review - Building a brain in the gut: development of the enteric nervous system[1] "The enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, is an essential component of the gut neuromusculature and controls many aspects of gut function, including coordinated muscular peristalsis. The ENS is entirely derived from neural crest cells (NCC) which undergo a number of key processes, including extensive migration into and along the gut, proliferation, and differentiation into enteric neurons and glia, during embryogenesis and fetal life. These mechanisms are under the molecular control of numerous signaling pathways, transcription factors, neurotrophic factors and extracellular matrix components. Failure in these processes and consequent abnormal ENS development can result in so-called enteric neuropathies, arguably the best characterized of which is the congenital disorder Hirschsprung disease (HSCR), or aganglionic megacolon."
  • Review - Development and developmental disorders of the enteric nervous system[2]

Development Overview

Myenteric plexus

Submucosal plexus

Neural Crest Migration

Abnormalities

Intestinal Aganglionosis

(intestinal aganglionosis, Hirschsprung's disease, aganglionic colon, megacolon, congenital aganglionic megacolon, congenital megacolon) A condition caused by the lack of enteric nervous system (neural ganglia) in the intestinal tract responsible for gastric motility (peristalsis). In general, its severity is dependent upon the amount of the GIT that lacks intrinsic ganglia, due to developmental lack of neural crest migration into those segments. (More? Neural Crest System - Abnormalities)

Historically, Hirschsprung's disease takes its name from Dr Harald Hirschsprung (1830-1916) a Danish pediatrician (of German extraction). In 1886, he presented at the German Society of Pediatrics conference in Berlin a case of 2 infants who died of complications of bowel obstruction (H. Hirschsprung, Stuhltragheit Neugeborener in Folge von Dilatation und Hypertrophie des Colons, Jhrb f Kinderh 27 (1888), pp. 1-7). Later autopsies identified a dilatation and hypertrophy of large intestine, and the rectum appeared normally narrow. Hirschsprung suggested that the condition was an inborn disease and named it congenital megacolon.

The first indication in newborns is an absence of the first bowel movement, other symptoms include throwing up and intestinal infections. Clinically this is detected by one or more tests (barium enema and x ray, manometry or biopsy) and can currently only be treated by surgery. A temoporary ostomy (Colostomy or Ileostomy) with a stoma is carried out prior to a more permanent pull-through surgery.

Megacolon stoma1.jpg Megacolon stoma2.jpg  
Ostomy - Aganglionic portion removed Stoma - intestine attached to the abdomen wall
Megacolon surgery 01.jpg Megacolon surgery 02.jpg Megacolon surgery 03.jpg
Short section of the colon without smooth muscle neural ganglia Aganglionic segment removed Reattachment

Australian Statistics

Hirschsprung’s disease[3] (1.3 per 10,000 births) ICD-10 Q43.1

  • A condition characterised by partial or complete bowel obstruction resulting from absence of peristalsis in a segment of bowel due to an aganglionic section of the bowel.
  • More than two-thirds (66.7%) of the babies born with this anomaly were males.
  • Women aged 40 years or older had the highest rate of affected pregnancies.


Links: Gastrointestinal Tract - Intestinal Aganglionosis | Neural Crest System - Abnormalities

References

  1. <pubmed>23167617</pubmed>
  2. <pubmed>23229326</pubmed>
  3. Abeywardana S & Sullivan EA 2008. Congenital Anomalies in Australia 2002-2003. Birth anomalies series no. 3 Cat. no. PER 41. Sydney: AIHW National Perinatal Statistics Unit.


Reviews

<pubmed></pubmed> <pubmed>22290331</pubmed> <pubmed></pubmed>


Articles

<pubmed></pubmed> <pubmed>23376538</pubmed> <pubmed>23205631</pubmed> <pubmed>22031881</pubmed> <pubmed>17420985</pubmed> <pubmed>14991401</pubmed>


Books

Anderson RB, Newgreen DF, Young HM. Neural Crest and the Development of the Enteric Nervous System. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-. Available from: http://www.ncbi.nlm.nih.gov/books/NBK6273/

Search PubMed

Search Pubmed: Enteric Neural Development | hirschprung's disease

Search All Databases: Enteric Neural Development

Additional Images

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.



Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, March 29) Embryology Neural Crest - Enteric Nervous System. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Neural_Crest_-_Enteric_Nervous_System

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G