Guinea Pig Development: Difference between revisions

From Embryology
No edit summary
Line 1: Line 1:
[[File:Guineapig icon.jpg|left]]
== Introduction ==
== Introduction ==
 
[[File:Guineapig icon.jpg|thumb|Adult Guinea Pig]]
Embryos from the guinea pig (''Cavia porcellus'') have been used in various tetragenic studies, including the effects of elevated body temperature on embryonic development. Postnatally guinea pigs can become sexually mature as early as four weeks.
Embryos from the guinea pig (''Cavia porcellus'') have been used in various tetragenic studies, including the effects of elevated body temperature on embryonic development. Postnatally guinea pigs can become sexually mature as early as four weeks.


Line 9: Line 7:
Nutritional research using guinea pigs showed that scurvy was due to a lack dietary vitamin C, and they have also been used for other dietary requirement studies.
Nutritional research using guinea pigs showed that scurvy was due to a lack dietary vitamin C, and they have also been used for other dietary requirement studies.


:'''Links:''' [[Abnormal_Development_-_Maternal_Hyperthermia|Maternal Hyperthermia]]
==Taxon==
==Taxon==
Cavia porcellus
Cavia porcellus

Revision as of 11:04, 3 August 2012

Introduction

Adult Guinea Pig

Embryos from the guinea pig (Cavia porcellus) have been used in various tetragenic studies, including the effects of elevated body temperature on embryonic development. Postnatally guinea pigs can become sexually mature as early as four weeks.

Historically, it was the Spanish conquistadors who brought guinea pigs to Europe from South America, where they are native, approximately 400 years ago.

Nutritional research using guinea pigs showed that scurvy was due to a lack dietary vitamin C, and they have also been used for other dietary requirement studies.

Links: Maternal Hyperthermia

Taxon

Cavia porcellus

Taxonomy Id: 10141 Preferred common name: domestic guinea pig Rank: species

Genetic code: Translation table 1 (Standard) Mitochondrial genetic code: Translation table 2 Other names: Cavia cobaya[synonym], Cavia aperea porcellus[synonym], guinea pig[common name]

Lineage( abbreviated ): Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Mammalia; Eutheria; Rodentia; Hystricognathi; Caviidae; Cavia

Development Overview

Lifespan: (maximum) 12 years, (average) 5 years.

Sexual maturity: 4-6 weeks

Estrous cycle: 15-17 days

Gestation period: 67-69 days

Average litter size: 3 pups (range 1 - 4)

Weaning age: 3 weeks

Hyperthermia and Development

Guinea pigs have been successfully used as a sensitive model system for the effects of maternal hyperthermia (high body temperature/fever) upon development. This is an excellent example of a maternal environmental effect on embryonic development and neurological effects have also been demonstrated in other rodent model systems. (More? Abnormal Development- Maternal Effects | Hyperthermia and Development)

Cawdell-Smith J, Upfold J, Edwards M, Smith M. Neural tube and other developmental anomalies in the guinea pig following maternal hyperthermia during early neural tube development. Teratog Carcinog Mutagen. 1992;12(1):1-9. "Guinea pigs were exposed to hyperthermia for 1 hr once or twice on day 11, 12, 13, or 14 (E11-E14) of pregnancy. The mean rectal temperatures were elevated by 3.4 degrees C-4.0 degrees C. This treatment resulted in a marked elevation of rates of resorption and developmental defects in embryos examined at day E23. The defects observed were those affecting the neural tube (NTD) (exencephaly, encephaloceles, and microphthalmia), kyphosis/scoliosis, branchial arch defects, and pericardial edema. Embryos with NTD and kyphosis/scoliosis have not been found among newborn guinea pigs to date following maternal heat exposure on days E12-E14. It appears that embryos with these defects are filtered out by resorption or abortion by days E30-E35." (More? see Marsh Edwards | Upfold etal., 1989)

Guinea Pig Research Characteristics

The following lists reasons why the guinea pig is an excellent model animal system for development studies.

  • Long Gestation Period With Mature Central Nervous System at Birth - toxicology and teratology studies.
  • Sensitivity of Respiratory System - asthma and environmental pollution studies.
  • Anatomy of the Guinea Pig Ear - inner ear studies because it is easily dissected and exposed.
  • Vitamin C Requirement - wound healing. bone, tooth and atherosclerosis studies.
  • Guinea Pig serum - Possesses hemolytic complement with higher activity levels than other lab animals. Widely used as a source of complement for complement fixation test.
  • Susceptibility to Infectious Diseases - sentinel animals because of their acute susceptibility to Coxiella burnetii., Mycobacterium sp. and Listeriosis.
  • Similar lmmune System to Man - immune system possesses a similar antigen-macrophage interaction to man and delayed cutaneous hypersensitivity reaction.
  • High Dietary Requirements - folic acid, thiamine, arginine and potassium make guinea pigs useful in nutrition studies.
  • Precocious Young - good for germ free raising.
  • Quiet Calm Disposition - entomology studies, used to test repellents and insecticides, and as feeding source for biting insects.


Text modified from Washington University - NetVet Guinea Pig Models and Uses in Research Notes

References


Search Pubmed: Guinea Pig Development

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

Animal Development

Animal Development: axolotl | bat | cat | chicken | cow | dog | dolphin | echidna | fly | frog | goat | grasshopper | guinea pig | hamster | horse | kangaroo | koala | lizard | medaka | mouse | opossum | pig | platypus | rabbit | rat | salamander | sea squirt | sea urchin | sheep | worm | zebrafish | life cycles | development timetable | development models | K12
Historic Embryology  
1897 Pig | 1900 Chicken | 1901 Lungfish | 1904 Sand Lizard | 1905 Rabbit | 1906 Deer | 1907 Tarsiers | 1908 Human | 1909 Northern Lapwing | 1909 South American and African Lungfish | 1910 Salamander | 1951 Frog | Embryology History | Historic Disclaimer

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 16) Embryology Guinea Pig Development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Guinea_Pig_Development

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G