File:Alternate androgen synthesis pathway.jpg: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
The “backdoor” pathway of androgen synthesis.
The “backdoor” pathway of androgen synthesis.


Steroids in the left-hand column (the Δ5 pathway) may be acted on by either 3βHSD1 or 3βHSD2 to yield the corresponding Δ4 steroids. Following the production of Preg, the backdoor pathway typically features its conversion to 17OH-Preg, which is then converted to the key intermediary, 17OHP. In the brain (and elsewhere), progesterone may be converted to the neuroactive steroid, allopregnanolone. 17OHP is 5α-reduced by 5αRed1 (SRD5A1) to 5α-pregnan-17α-ol-3,20-dione, which is then 3α-reduced by AKR1C2 or AKR1C4 to yield 17OH-allopregnanolone. P450c17 catalyzes its 17,20 lyase activity very efficiently when 17OH-allopregnanolone is the substrate, yielding androsterone, which O’Shaughnessy and colleageus show is the principal androgen in human male fetal circulation. Androsterone may then acted on by testicular 17βHSD3 (or, to a minor degree, by adrenal 17βHSD5 [AKR1C3]) to yield androstanediol, which may be 3α-oxidized, probably by 17βHSD6 (HSD17B6; also known as RoDH, to yield the most potent androgen, DHT. The work of O’Shaughnessy and colleagues shows that the human fetal testis instead uses progesterone produced by the placenta to generate the 17OHP that initiates the backdoor pathway. The identities of all of the enzymes catalyzing the reductive and oxidative 3αHSD reactions have not been determined unambiguously. 17OHP, 17OH-progesterone; DHT, dihydrotestosterone; Preg, pregnenolone; RoDH, retinol dehydrogenase.
Steroids in the left-hand column (the Δ5 pathway) may be acted on by either 3βHSD1 or 3βHSD2 to yield the corresponding Δ4 steroids.


Pbio.3000198.g002.jpg
Following the production of Preg, the backdoor pathway typically features its conversion to 17OH-Preg, which is then converted to the key intermediary, 17OHP. In the brain (and elsewhere), progesterone may be converted to the neuroactive steroid, allopregnanolone. 17OHP is 5α-reduced by 5αRed1 (SRD5A1) to 5α-pregnan-17α-ol-3,20-dione, which is then 3α-reduced by AKR1C2 or AKR1C4 to yield 17OH-allopregnanolone. P450c17 catalyzes its 17,20 lyase activity very efficiently when 17OH-allopregnanolone is the substrate, yielding androsterone, which O’Shaughnessy and colleageus show is the principal androgen in human male fetal circulation. Androsterone may then acted on by testicular 17βHSD3 (or, to a minor degree, by adrenal 17βHSD5 [AKR1C3]) to yield androstanediol, which may be 3α-oxidized, probably by 17βHSD6 (HSD17B6; also known as RoDH, to yield the most potent androgen, DHT.
 
 
The work of O’Shaughnessy and colleagues shows that the human fetal testis instead uses progesterone produced by the placenta to generate the 17OHP that initiates the backdoor pathway. The identities of all of the enzymes catalyzing the reductive and oxidative 3αHSD reactions have not been determined unambiguously. 17OHP, 17OH-progesterone; DHT, dihydrotestosterone; Preg, pregnenolone; RoDH, retinol dehydrogenase.
<br>
 
 
 
{{Genital Links}}
===Reference===
===Reference===
{{#pmid:30763313}}
Figure is from same issue review of teh article.
{{#pmid:30943210}}
{{#pmid:30943210}}
====Copyright====
====Copyright====
© 2019 Miller, Auchus
© 2019 Miller, Auchus
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Pbio.3000198.g002.jpg
{{Footer}}

Latest revision as of 08:21, 20 May 2019

Summary

Alternate androgen synthesis pathway

The “backdoor” pathway of androgen synthesis.

Steroids in the left-hand column (the Δ5 pathway) may be acted on by either 3βHSD1 or 3βHSD2 to yield the corresponding Δ4 steroids.

Following the production of Preg, the backdoor pathway typically features its conversion to 17OH-Preg, which is then converted to the key intermediary, 17OHP. In the brain (and elsewhere), progesterone may be converted to the neuroactive steroid, allopregnanolone. 17OHP is 5α-reduced by 5αRed1 (SRD5A1) to 5α-pregnan-17α-ol-3,20-dione, which is then 3α-reduced by AKR1C2 or AKR1C4 to yield 17OH-allopregnanolone. P450c17 catalyzes its 17,20 lyase activity very efficiently when 17OH-allopregnanolone is the substrate, yielding androsterone, which O’Shaughnessy and colleageus show is the principal androgen in human male fetal circulation. Androsterone may then acted on by testicular 17βHSD3 (or, to a minor degree, by adrenal 17βHSD5 [AKR1C3]) to yield androstanediol, which may be 3α-oxidized, probably by 17βHSD6 (HSD17B6; also known as RoDH, to yield the most potent androgen, DHT.


The work of O’Shaughnessy and colleagues shows that the human fetal testis instead uses progesterone produced by the placenta to generate the 17OHP that initiates the backdoor pathway. The identities of all of the enzymes catalyzing the reductive and oxidative 3αHSD reactions have not been determined unambiguously. 17OHP, 17OH-progesterone; DHT, dihydrotestosterone; Preg, pregnenolone; RoDH, retinol dehydrogenase.


Genital Links: genital | Lecture - Medicine | Lecture - Science | Lecture Movie | Medicine - Practical | primordial germ cell | meiosis | endocrine gonad‎ | Genital Movies | genital abnormalities | Assisted Reproductive Technology | puberty | Category:Genital
Female | X | X inactivation | ovary | corpus luteum | oocyte | uterus | vagina | reproductive cycles | menstrual cycle | Category:Female
Male | Y | SRY | testis | spermatozoa | ductus deferens | penis | prostate | Category:Male
Historic Embryology - Genital 
General: 1901 Urinogenital Tract | 1902 The Uro-Genital System | 1904 Ovary and Testis | 1912 Urinogenital Organ Development | 1914 External Genitalia | 1921 Urogenital Development | 1921 External Genital | 1942 Sex Cords | 1953 Germ Cells | Historic Embryology Papers | Historic Disclaimer
Female: 1904 Ovary and Testis | 1904 Hymen | 1912 Urinogenital Organ Development | 1914 External Genitalia | 1914 Female | 1921 External Genital | 1927 Female Foetus 15 cm | 1927 Vagina | 1932 Postnatal Ovary
Male: 1887-88 Testis | 1904 Ovary and Testis | 1904 Leydig Cells | 1906 Testis vascular | 1909 Prostate | 1912 Prostate | 1914 External Genitalia | 1915 Cowper’s and Bartholin’s Glands | 1920 Wolffian tubules | 1935 Prepuce | 1935 Wolffian Duct | 1942 Sex Cords | 1943 Testes Descent | Historic Embryology Papers | Historic Disclaimer

Reference

O'Shaughnessy PJ, Antignac JP, Le Bizec B, Morvan ML, Svechnikov K, Söder O, Savchuk I, Monteiro A, Soffientini U, Johnston ZC, Bellingham M, Hough D, Walker N, Filis P & Fowler PA. (2019). Alternative (backdoor) androgen production and masculinization in the human fetus. PLoS Biol. , 17, e3000002. PMID: 30763313 DOI.

Figure is from same issue review of teh article. Miller WL & Auchus RJ. (2019). The "backdoor pathway" of androgen synthesis in human male sexual development. PLoS Biol. , 17, e3000198. PMID: 30943210 DOI.

Copyright

© 2019 Miller, Auchus This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Pbio.3000198.g002.jpg


Cite this page: Hill, M.A. (2024, April 23) Embryology Alternate androgen synthesis pathway.jpg. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/File:Alternate_androgen_synthesis_pathway.jpg

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current15:12, 18 May 2019Thumbnail for version as of 15:12, 18 May 2019750 × 425 (99 KB)Z8600021 (talk | contribs)==Alternate androgen synthesis pathway== The “backdoor” pathway of androgen synthesis. Steroids in the left-hand column (the Δ5 pathway) may be acted on by either 3βHSD1 or 3βHSD2 to yield the corresponding Δ4 steroids. Following the product...

There are no pages that use this file.

Metadata