Developmental Mechanism - Tube Formation

From Embryology
Revision as of 22:18, 3 December 2013 by Z8600021 (talk | contribs)
Notice - Mark Hill
Currently this page is only a template and will be updated (this notice removed when completed).

Introduction

Throughout the body are many structures which are described as "tubular", that is they have a cellular wall with a hollow and generally fluid-filled core.

How do you make a "pipe" from cells, are there common mechanisms of this tube formation or a number of different ways of generating hollow structures? In research there does not seem to be a "tube research group", but a number of embryology and cell biology research laboratories are now looking at how cellular tubes form in their particular tissue of interest (heart, blood vessels, neural, gastrointestinal tract, respiratory tract, kidney, genital).


Mechanism - "a process, technique, or system for achieving a result".


Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular

Some Recent Findings

  • Effects of nanostructures and mouse embryonic stem cells on in vitro morphogenesis of rat testicular cords[1] "Morphogenesis of tubular structures is a common event during embryonic development. The signals providing cells with topographical cues to define a cord axis and to form new compartments surrounded by a basement membrane are poorly understood. Male gonadal differentiation is a late event during organogenesis and continues into postnatal life. The cellular changes resemble the mechanisms during embryonic life leading to tubular structures in other organs. ...Our studies show that epithelial (Sertoli cell) and mesenchymal (peritubular cells) cells crosstalk and orchestrate the formation of cords in response to physical features of the underlying matrix as well as secretory factors from ES cells." Testis Development
  • MIM regulates vertebrate neural tube closure[2] "Neural tube closure is a critical morphogenetic event that is regulated by dynamic changes in cell shape and behavior. Although previous studies have uncovered a central role for the non-canonical Wnt signaling pathway in neural tube closure, the underlying mechanism remains poorly resolved. Here, we show that the missing in metastasis (MIM; Mtss1) protein, previously identified as a Hedgehog response gene and actin and membrane remodeling protein, specifically binds to Daam1 and couples non-canonical Wnt signaling to neural tube closure."
  • Apical constriction: a cell shape change that can drive morphogenesis[3] "Biologists have long recognized that dramatic bending of a cell sheet may be driven by even modest shrinking of the apical sides of cells. Cell shape changes and tissue movements like these are at the core of many of the morphogenetic movements that shape animal form during development, driving processes such as gastrulation, tube formation, and neurulation. The mechanisms of such cell shape changes must integrate developmental patterning information in order to spatially and temporally control force production-issues that touch on fundamental aspects of both cell and developmental biology and on birth defects research. How does developmental patterning regulate force-producing mechanisms, and what roles do such mechanisms play in development? Work on apical constriction from multiple systems including Drosophila, Caenorhabditis elegans, sea urchin, Xenopus, chick, and mouse has begun to illuminate these issues. Here, we review this effort to explore the diversity of mechanisms of apical constriction, the diversity of roles that apical constriction plays in development, and the common themes that emerge from comparing systems."


References

  1. <pubmed>23555881</pubmed>
  2. <pubmed>21471152</pubmed>
  3. <pubmed>19751720</pubmed>


Textbooks

Reviews

<pubmed></pubmed>

Articles

Search PubMed

Search Pubmed: developmental tube formation

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.



Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 18) Embryology Developmental Mechanism - Tube Formation. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Developmental_Mechanism_-_Tube_Formation

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G