Developmental Mechanism - Morphodynamics

From Embryology
Revision as of 10:17, 2 December 2013 by Z8600021 (talk | contribs)
Notice - Mark Hill
Currently this page is only a template and will be updated (this notice removed when completed).

Introduction

Morphodynamics refers to the biomechanical effects involved in development. There are several researchers who continue to build on concepts developed by Blechschmidt and others describing developmental events in terms of the physics involved in stresses and fluid movement within the embryo as important factors involved in establishing embryonic structures.

Mechanism - "a process, technique, or system for achieving a result".

This page is an attempt to include concepts related to development based upon the physics (stresses, strains, gravity and fluid movement) occuring during growth. In some respects this is in response to the very dominant "molecular" nature of recent studies in comparison to the many other ways of describing developmental events. The two area appear more recently to be converging using new molecular findings to be incorporated or married with the morphodynamic descriptions.

Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular

Some Recent Findings

  • Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung[1] "Branching morphogenesis sculpts the airway epithelium of the lung into a tree-like structure to conduct air and promote gas exchange after birth. In the avian lung, a series of buds emerges from the dorsal surface of the primary bronchus via monopodial branching to form the conducting airways; anatomically, these buds are similar to those formed by domain branching in the mammalian lung. Here, we show that monopodial branching is initiated by apical constriction of the airway epithelium, and not by differential cell proliferation, using computational modeling and quantitative imaging of embryonic chicken lung explants."

References

  1. <pubmed>23824575</pubmed>


Textbooks

Reviews

<pubmed></pubmed> <pubmed></pubmed> <pubmed>11732573</pubmed>

Articles

<pubmed></pubmed> <pubmed></pubmed> <pubmed></pubmed>

Search PubMed

Search Pubmed: Embryo Morphodynamics | Morphodynamics


External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.



Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, March 29) Embryology Developmental Mechanism - Morphodynamics. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Developmental_Mechanism_-_Morphodynamics

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G