Developmental Mechanism - Epithelial Mesenchymal Transition

From Embryology
Revision as of 07:32, 15 October 2015 by Z8600021 (talk | contribs)
Embryology - 24 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Gastrulation epithelial to mesenchymal transition

Epithelial cells (organised cellular layer) which loose their organisation and migrate/proliferate as a mesenchymal cells (disorganised cellular layers) are said to have undergone an Epithelial Mesenchymal Transition (EMT).

Mesenchymal cells, connective tissue-like, that have undergone this process may at a later time and under specific signaling can undergo the opposite process, mesenchyme to epithelia. In development, this process can be repeated several times during tissue differentiation.


Mechanism - "a process, technique, or system for achieving a result".


This process is also studied in carcinogenesis (oncogenesis) or cancer development, where part of this process can be the transformation of an epithelial cell into a mesenchymal cell.[1][2]


Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular

Some Recent Findings

  • p53 coordinates cranial neural crest cell growth and epithelial-mesenchymal transition/delamination processes[3] "Neural crest development involves epithelial-mesenchymal transition (EMT), during which epithelial cells are converted into individual migratory cells. Notably, the same signaling pathways regulate EMT function during both development and tumor metastasis. p53 plays multiple roles in the prevention of tumor development; however, its precise roles during embryogenesis are less clear. We have investigated the role of p53 in early cranial neural crest (CNC) development in chick and mouse embryos. In the mouse, p53 knockout embryos displayed broad craniofacial defects in skeletal, neuronal and muscle tissues. In the chick, p53 is expressed in CNC progenitors and its expression decreases with their delamination from the neural tube. Stabilization of p53 protein using a pharmacological inhibitor of its negative regulator, MDM2, resulted in reduced SNAIL2 (SLUG) and ETS1 expression, fewer migrating CNC cells and in craniofacial defects."

Gastrulation

Links:Gastrulation

Neural Crest Development

Links:

Heart Development

During heart development endocardial and epicardial cells produce non-cardiomyocyte lineages undergo rounds of epithelial to mesenchymal transition, see review.[4]


Links: Cardiovascular System Development

Respiratory Development

Neonatal Human Fetal Rabbit
Neonatal human pulmonary neuroendocrine cell EM01.jpg Fetal rabbit neuroepithelial body 01.jpg
Pulmonary neuroendocrine cell (EM)[5] Neuroepithelial body[5]

Pulmonary Neuroendocrine Cells (PNECs) differentiate in the airway epithelium in late embryonic to early fetal period.[6][7] Later in the mid-fetal period clusters of these cells form neuroepithelial bodies (NEBs). The cells migrate to to form these clusters by a process involving transient epithelial to mesenchymal transition. The process of migration has recently been described as “slithering”[8], where the cells transiently lose epithelial characteristics but remain associated with the membrane while traversing neighboring epithelial cells to reach cluster sites.


Links: Endocrine Respiratory | Respiratory System Development

Mesenchymal-to-Epithelial Transition

The alternate process involves the conversion of the embryonic connective tissue organization (mesenchyme) to an epithelial organization (epithelium) that can occur during developmental processes.

This process can be seen occurring during early somitogenesis.


It is also suggested that this mechanism occurs in the maternal uterus during endometrial regeneration following decidualization.[9][10]


Links: Mesenchymal Epithelial Transition

References

  1. <pubmed>20943648</pubmed>
  2. <pubmed>21559368</pubmed>
  3. <pubmed>21447558</pubmed>
  4. <pubmed>22679138</pubmed>
  5. 5.0 5.1 <pubmed>6376101</pubmed>
  6. <pubmed>6188605</pubmed>
  7. <pubmed>3906540</pubmed>
  8. <pubmed>26435104</pubmed>
  9. <pubmed>24466063</pubmed>
  10. <pubmed>23216285</pubmed>


Textbooks

Reviews

<pubmed></pubmed>

Articles

Search PubMed

Search Pubmed: Epithelial Mesenchymal Transition

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.



Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, April 24) Embryology Developmental Mechanism - Epithelial Mesenchymal Transition. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Developmental_Mechanism_-_Epithelial_Mesenchymal_Transition

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G