Developmental Mechanism - Apoptosis: Difference between revisions

From Embryology
Line 26: Line 26:
* '''John Sulston''' (b 1942), Cambridge, England, mapped a cell lineage where every cell division and differentiation could be followed in the development of a tissue in C. elegans. He showed that specific cells undergo programmed cell death as an integral part of the normal differentiation process, and he identified the first mutation of a gene participating in the cell death process.
* '''John Sulston''' (b 1942), Cambridge, England, mapped a cell lineage where every cell division and differentiation could be followed in the development of a tissue in C. elegans. He showed that specific cells undergo programmed cell death as an integral part of the normal differentiation process, and he identified the first mutation of a gene participating in the cell death process.
* '''Robert Horvitz''' (b 1947), Cambridge, MA, USA, has discovered and characterized key genes controlling cell death in C. elegans. He has shown how these genes interact with each other in the cell death process and that corresponding genes exist in humans.
* '''Robert Horvitz''' (b 1947), Cambridge, MA, USA, has discovered and characterized key genes controlling cell death in C. elegans. He has shown how these genes interact with each other in the cell death process and that corresponding genes exist in humans.
:'''Links:''' [http://nobelprize.org/nobel_prizes/medicine/laureates/2002/press.html Nobel Prize 2002]


==Apoptosis Regulators==
==Apoptosis Regulators==
Line 56: Line 59:


|}
|}
:'''Links:''' [http://nobelprize.org/nobel_prizes/medicine/laureates/2002/press.html Nobel Prize 2002]


== References ==
== References ==

Revision as of 08:09, 13 November 2011

Notice - Mark Hill
Currently this page is only a template and will be updated (this notice removed when completed).

Introduction

This single term "apoptosis" describes the way in which the majority of cells die within our adult body are removed every day, "Programmed Cell Death". In development, apoptosis begins in the early blastocyst and is a developmental mechanism found throughout tissues in the embryo and fetus developmental stages.

While the cellular morphological changes associated with this process are the same in all cells, there are many different signaling pathways that can "trigger" this process. They fall generally into two signalling classes either intrinsic or extrinsic to the cell.

Greek, ptosis= "falling", as in when leaves fall from a tree in autumn.


Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular

| Cell Biology Lecture - Cell Death

Some Recent Findings


Nobel Prize 2002

The 2002 Nobel Prize in Physiology or Medicine went to three researchers who originally identified this mechanism in the genetic regulation of organ development and programmed cell death.

  • Sydney Brenner (b 1927), Berkeley, CA, USA, established C. elegans as a novel experimental model organism. This provided a unique opportunity to link genetic analysis to cell division, differentiation and organ development – and to follow these processes under the microscope. Brenner's discoveries, carried out in Cambridge, UK, laid the foundation for this year's Prize.
  • John Sulston (b 1942), Cambridge, England, mapped a cell lineage where every cell division and differentiation could be followed in the development of a tissue in C. elegans. He showed that specific cells undergo programmed cell death as an integral part of the normal differentiation process, and he identified the first mutation of a gene participating in the cell death process.
  • Robert Horvitz (b 1947), Cambridge, MA, USA, has discovered and characterized key genes controlling cell death in C. elegans. He has shown how these genes interact with each other in the cell death process and that corresponding genes exist in humans.


Links: Nobel Prize 2002

Apoptosis Regulators

Regulators can initiate or block apoptosis, the regulators shown block apoptosis.

Regulator → Adaptor → Effector
C. elegans      Ced-9 → Ced-4 → Ced-3 → Death
Vertebrates      Bcl-2 → Apaf-1 → Caspase-9 → Caspase-3 → Death

References

  1. <pubmed></pubmed>


Textbooks

Reviews

<pubmed></pubmed>

Articles

Search PubMed

Search Pubmed: developmental apoptosis | developmental cell death | apoptosis

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Mechanism Links: mitosis | cell migration | cell junctions |epithelial invagination | epithelial mesenchymal transition | mesenchymal epithelial transition | epithelial mesenchymal interaction | morphodynamics | tube formation | apoptosis | autophagy | axes formation | time | molecular


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, April 19) Embryology Developmental Mechanism - Apoptosis. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Developmental_Mechanism_-_Apoptosis

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G