Detailed Cardiac - Pulmonary Vein

From Embryology
Revision as of 09:43, 19 February 2017 by Z8600021 (talk | contribs) (→‎Some Recent Findings)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Embryology - 25 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Online Editor 
Mark Hill.jpg
This content was contributed by Prof Robert H. Anderson.

Anderson RH. Teratogenecity in the setting of cardiac development and maldevelopment. (2016)

Please note that the content is still at the early draft stage and will be the basis of updating the online cardiac development information with a more detailed description as shown by the page links below (shown in red if not yet existing).

Detailed Cardiac: Systemic Venous Sinus | Pulmonary Vein | Superior Interatrial Fold | Atrioventricular Cushions | Atrioventricular Canal | Interventricular Communication | Subpulmonary Infundibulum | Arterial Roots | Intrapericardial Arterial Trunks | Extrapericardial Arterial Channels | Sinus Node | Atrioventricular Conduction Axis

Cardiovascular Links: cardiovascular | Heart Tutorial | Lecture - Early Vascular | Lecture - Heart | Movies | 2016 Cardiac Review | heart | coronary circulation | heart valve | heart rate | Circulation | blood | blood vessel | blood vessel histology | heart histology | Lymphatic | ductus venosus | spleen | Stage 22 | cardiovascular abnormalities | OMIM | 2012 ECHO Meeting | Category:Cardiovascular
Historic Embryology - Cardiovascular 
1902 Vena cava inferior | 1905 Brain Blood Vessels | 1909 Cervical Veins | 1909 Dorsal aorta and umbilical veins | 1912 Heart | 1912 Human Heart | 1914 Earliest Blood-Vessels | 1915 Congenital Cardiac Disease | 1915 Dura Venous Sinuses | 1916 Blood cell origin | 1916 Pars Membranacea Septi | 1919 Lower Limb Arteries | 1921 Human Brain Vascular | 1921 Spleen | 1922 Aortic-Arch System | 1922 Pig Forelimb Arteries | 1922 Chicken Pulmonary | 1923 Head Subcutaneous Plexus | 1923 Ductus Venosus | 1925 Venous Development | 1927 Stage 11 Heart | 1928 Heart Blood Flow | 1935 Aorta | 1935 Venous valves | 1938 Pars Membranacea Septi | 1938 Foramen Ovale | 1939 Atrio-Ventricular Valves | 1940 Vena cava inferior | 1940 Early Hematopoiesis | 1941 Blood Formation | 1942 Truncus and Conus Partitioning | Ziegler Heart Models | 1951 Heart Movie | 1954 Week 9 Heart | 1957 Cranial venous system | 1959 Brain Arterial Anastomoses | Historic Embryology Papers | 2012 ECHO Meeting | 2016 Cardiac Review | Historic Disclaimer

Search: PubMed - Anderson RH

Detailed Cardiac: Systemic Venous Sinus | Pulmonary Vein | Superior Interatrial Fold | Atrioventricular Cushions | Atrioventricular Canal | Interventricular Communication | Subpulmonary Infundibulum | Arterial Roots | Intrapericardial Arterial Trunks | Extrapericardial Arterial Channels | Sinus Node | Atrioventricular Conduction Axis

Formation of the Pulmonary Vein, and its Subsequent Incorporation into the Left Atrium

Some Recent Findings

  • Development of the pulmonary vein and the systemic venous sinus: an interactive 3D overview[1] "we present a 3D study of the developing venous pole in the chicken embryo, showing our results in a novel interactive fashion, which permits the reader to form an independent opinion. We clarify how the pulmonary vein separates from a greater vascular plexus within the splanchnic mesoderm. The systemic venous sinus, in contrast, develops at the junction between the splanchnic and somatic mesoderm."
More recent papers  
Mark Hill.jpg
PubMed logo.gif

This table allows an automated computer search of the external PubMed database using the listed "Search term" text link.

  • This search now requires a manual link as the original PubMed extension has been disabled.
  • The displayed list of references do not reflect any editorial selection of material based on content or relevance.
  • References also appear on this list based upon the date of the actual page viewing.

References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

More? References | Discussion Page | Journal Searches | 2019 References | 2020 References

Search term: Pulmonary Vein Development

<pubmed limit=5>Pulmonary Vein Development</pubmed>

<pubmed limit=5>Pulmonary Vein Embryology</pubmed>

Remodelling of the Venous Tributaries

By Robert H. Anderson

Further development of the atrial chambers, which occurs concomitant with the process of ballooning, requires remodeling of the venous channels which bring the blood back to the heart. There are three such sets of venous tributaries.They bring blood from the embryo, the yolk sac, and the placenta, respectively. The three sets unify to form the so-called sinus horns, which then drain to the initial atrial part of the heart tube. At the initial stages, when the blood enters the atrial component of the heart on each side through the so-called sinus horns, there is minimal formation of the lungs, so there are no pulmonary veins. It is the systemic venous return, therefore, which enters both sides of the atrial part of the tube. This part of the tube, moreover, remains connected to the body of the embryo through a stalk, known as the dorsal mesocardium. The dorsal mesocardium is bordered by two prominences known as the pulmonary ridges. The connection with the pharyngeal mesenchyme through the heart stalk will eventually, subsequent to the development of vascular channels within the lung buds, function as the portal of entry for the pulmonary vein (Figure 4).


Fig. 4. The section is from another mouse embryo early at E10.5. It shows the continuity of the atrial component of the heart tube with the pharyngeal mesenchyme through the connection known as the dorsal mesocardium, or heart stalk. This connects the heart with the body of the embryo, producing raised flanges known as the pulmonary ridges. These flank the pulmonary pit (white stars with black borders). Note the presence of a midline strand within the pharyngeal mesenchyme. This will eventually canalize to form the pulmonary vein.

Prior to canalization of the pulmonary vein, however, there is a shift of the blood entering the heart through the systemic venous tributaries. As already emphasized, the channels bringing the blood from the embryo back to the heart initially enter the atrial component of the heart tube in symmetrical fashion (Figure 5).


Fig. 5. The image is a scanning electron micrograph through the dorsal mesocardium prepared from a mouse embryo at E8.5, earlier than the specimen shown in Figure 4. The lungs have yet to develop at this early stage. The venous tributaries open in relatively symmetrical fashion to the atrial component of the heart tube through the channels known as the horn of the systemic venous sinus.

At the earlier stage, as shown in Figure 5, there are no obvious boundaries between the atrial chamber and the systemic venous channels, with the lungs not yet having been formed. With ongoing development, the venous channels move rightwards so that, eventually, they open only to the right side of the initially common atrial chamber. As the channels move rightwards, so flaps of myocardium are formed at their junction with the atrial chamber, producing the structures known as the venous valves. It is at this stage, furthermore, during the early part of E10.5 in the mouse, that the first sign is seen of atrial septation (Figure 6).


Fig. 6. The image is prepared from the same dataset as Figure 4. It shows a cut through the junction between the venous tributaries and the atrial component of the heart tube, with the boundary between the two now marked by the venous valves. As can be seen, the junction is to the right side of the common atrial chamber. Note the pulmonary pit between the pulmonary ridges, which mark the site of the dorsal mesicardium. Note also the appearance of the atrial septum in the roof of the common atrial chamber.

It is subsequent to the rightward shift of the systemic venous tributaries, as shown in Figure 6, that the lung buds grow and develop their own vasculature. The intraparenchymal pulmonary veins initially form a plexus that has connections with the adjacent systemic venous channels developing within the body of the embryo itself. With normal development, however, the pulmonary veins unite in the midline, with formation of a common pulmonary vein. This canalizes from the mid-pharyngeal strand, which was recognizable even before the establishment of the intraparenchymal plexuses (Figure 4). The common pulmonary vein then opens to the heart through the pulmonary pit, itself adjacent to the left sinus horn in the left atrioventricular junction (Figure 7).


Fig. 7. The images are from different human embryos at Carnegie stage 14, at the end of the fourth week of development. The left hand panel, which is a sagittal section, shows the entrance of the pulmonary vein adjacent to the left sinus horn and the atrioventricular junction. The right hand panel, sectioned in frontal fashion, shows how the vein enters the atrial component of the heart tube between the pulmonary ridges, confirming its adjacency to the atrioventricular canal.


  1. <pubmed>21779373</pubmed> PLoS One


Cite this page: Hill, M.A. (2024, April 25) Embryology Detailed Cardiac - Pulmonary Vein. Retrieved from

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G