Cell Division - Meiosis: Difference between revisions

From Embryology
mNo edit summary
mNo edit summary
Line 170: Line 170:


Assisted reproductive techniques involving intracytoplasmic sperm injection (ICSI) have looked at the "quality" of the polar body and found that the morphology is related to mature oocyte viability and has the potential to predict oocyte fertilization rates and pregnancy achievement.<ref><pubmed>10655316</pubmed></ref><ref><pubmed>19960239</pubmed>| [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799563 PMC2799563]</ref>
Assisted reproductive techniques involving intracytoplasmic sperm injection (ICSI) have looked at the "quality" of the polar body and found that the morphology is related to mature oocyte viability and has the potential to predict oocyte fertilization rates and pregnancy achievement.<ref><pubmed>10655316</pubmed></ref><ref><pubmed>19960239</pubmed>| [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799563 PMC2799563]</ref>
<gallery caption="Polar Body Electron Micrographs">
File:Human pronuclear stage EM26.jpg|First Polar Body cortical granules
File:Human pronuclear stage EM27.jpg|First Polar Body chromosomes
File:Human pronuclear stage EM28.jpg|First Polar Body microtubules
File:Human pronuclear stage EM29.jpg|Second Polar Body chromatin
File:Human pronuclear stage EM30.jpg|Second Polar Body cytoplasmic bridge
<gallery>
:'''Links:''' [[:Category:Polar Body|Category:Polar Body]]


===Female Abnormalities===
===Female Abnormalities===

Revision as of 10:57, 17 June 2014

Embryology - 28 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

300pxMitosis and Meiosis

Meiosis is the special type of reductive cell division occurring only in the generation of the gametes or germ cells (oocyte and spermatozoa). Meiotic cell division reduces (halves) the chromosomal content. The overall process of germ cell development is called "gametogenesis" and includes not only meiosis but also the cellular changes, that occur differently in male and female gametes.


Cell Division Links: meiosis | mitosis | Lecture - Cell Division and Fertilization | spermatozoa | oocyte | fertilization | zygote | Genetics
Female gametogenesis.jpg Male gametogenesis.jpg
Female gametogenesis Male gametogenesis

Some Recent Findings

Karyotype of parthenogenetic blastocysts[1]
  • Chromosomes in the Porcine First Polar Body Possess Competence of Second Meiotic Division within Enucleated MII Stage Oocytes[1] "These results demonstrate that chromosomes in PB1 can participate in normal pre-implantation embryonic development when injected into enucleated MII stage oocytes, and that tetraploid PA blastocysts are produced (although at a low proportion) when PB1 chromosomes are injected into intact MII stage oocytes."
  • Bora regulates meiotic spindle assembly and cell cycle during mouse oocyte meiosis[2] "Bora is the binding partner of Aurora A, which is required for its activation and phosphorylation of Polo like kinase 1 (Plk1), and is involved in the spindle assembly and progress of the cell cycle during mitosis. In this study, we examined the expression, localization, and function of Bora during mouse oocyte meiosis. The expression level of Bora was increased during oocyte meiotic maturation, with an elevated level at metaphase. Immunofluorescence analysis showed that Bora was concentrated as a dot shortly after germinal vesicle breakdown (GVBD), associating first with the surrounding chromosomes and then with the spindle throughout the oocyte meiotic maturation. Further experiments confirmed that Bora co-localized with α-tubulin at prometaphase/metaphase, but dissociated from α-tubulin at anaphase/telophase."

Meiosis

Mitosis and meiosis.jpg

Comparison of Meiosis/Mitosis

  • After DNA replication 2 nuclear (and cell) divisions required to produce haploid gametes
  • Each diploid cell in meiosis produces 4 haploid cells (sperm) 1 haploid cell (egg)
  • Each diploid cell mitosis produces 2 diploid cells


Meiosis Germ cell division (haploid)

  • Reductive division
  • Generates haploid gametes (egg, sperm)
  • Each genetically distinct from parent
  • Genetic recombination (prophase 1)
    • Exchanges portions of chromosomes maternal/paternal homologous pairs
  • Independent assortment of paternal chromosomes (meiosis 1)

Homologous chromosomes pairing unique to meiosis

  • Each chromosome duplicated and exists as attached sister chromatids before pairing occurs
  • Genetic Recombination shown by chromosomes part red and part black
    • chromosome pairing in meiosis involves crossing-over between homologous chromosomes

Meiosis I and II

  • Meiosis I separates the pairs of homologous chromosomes, reduces the cell from diploid to haploid.
  • Meiosis II separates each chromosome into two chromatids (chromosome behavior in meiosis II is like that of mitosis).

Figure 14.32. Comparison of meiosis and mitosis

Prophase I

  • The homologous chromosomes pair and exchange DNA to form recombinant chromosomes.
  • Note - in oocyte development, from birth until puberty oocytes are in "prophase I arrest" at diplotene stage. This is important for sustaining the ovarian oocyte pool and lutenizing hormone (LH) induces resumption of meiosis I.
Meiotic prophase I stages
Mouse early meiotic prophase I stages[3]

Prophase I is further divided into five stages (phases):

Leptotene

  • leptotene phase, leptonema; Greek, leptotene = "thin threads"
  • the duplicated paired chromosome homologs condense.

Zygotene

  • zygotene phase, zygonema, Greek, zygotene = "paired threads"
  • homologous chromosomes become closely associated (synapsis) to form pairs of chromosomes consisting of four chromatids (tetrads).
  • the synaptonemal complex begins to form between the two sets of sister chromatids in each bivalent (the duplicated chromosome paired with its homologous duplicated chromosome).

Pachytene

  • pachytene phase, pachynema; Greek, pachytene = "thick threads"
  • crossing over between pairs of homologous chromosomes to form chiasmata (form between two nonsister chromatids at points where they have crossed over)
  • synaptonemal complex is complete and can be stable for some time.
  • Autosomal non-sister chromatids of homologous chromosomes can now extensively exchange segments in regions of homology.
  • Only small regions of non-paired sex chromosomes interact

Diplotene

  • diplotene phase, diplonema; Greek, diplonema = "two threads"
  • homologous chromosomes begin to separate but remain attached by chiasmata.
  • synaptonemal complex degrades and the chromosomes separate from one another a small amount giving this appearance.
  • It is possible that some chromosome uncoiling may also occur allowing some gene transcription.
    • In the developing human ovary, oocytes remain at the diplotene stage from fetal life through postnatal childhood, until puberty when the lutenizing hormone (LH) surges stimulate the resumption of meiosis.

Diakinesis

  • diakinesis phase; Greek, diakinesis = "moving through"
  • homologous chromosomes continue to separate, and chiasmata move to the ends of the chromosomes.
  • prophase I ends and chromosomes now recondense, transcription stops and the transition to metaphase occurs.

Prometaphase I

  • Spindle apparatus formed, and chromosomes attached to spindle fibres by kinetochores.
Mouse oocyte meiosis[4]

Metaphase I

  • Homologous pairs of chromosomes (bivalents) arranged as a double row along the metaphase plate. The arrangement of the paired chromosomes with respect to the poles of the spindle apparatus is random along the metaphase plate. (This is a source of genetic variation through random assortment, as the paternal and maternal chromosomes in a homologous pair are similar but not identical. The number of possible arrangements is 2n, where n is the number of chromosomes in a haploid set. Human beings have 23 different chromosomes, so the number of possible combinations is 223, which is over 8 million.)

Anaphase I

  • The homologous chromosomes in each bivalent are separated and move to the opposite poles of the cell.

Telophase I

  • The chromosomes become diffuse and the nuclear membrane reforms.

Cytokinesis I

  • Cellular cytoplasmic division to form two new cells, followed by Meiosis II.
  • Note - in oocyte meiosis, the extrusion of the first polar body (1 PB) indicates completion of the first meiotic division.

Prophase II

  • Chromosomes begin to condense, nuclear membrane breaks down and spindle forms.

Metaphase II

  • Spindle fibres attach to chromosomes, chromosomes align in cell centre.

Anaphase II

  • Chromosomes separate and move to the opposite poles of the cell.

Telophase II

  • Chromosomes reach spindle pole ends and the nuclear membrane reforms.

Cytokinesis

Cellular cytoplasmic division to form new cells.

Meiosis Sex Differences

Female (oogenesis)

  • Meiosis initiated once in a finite population of cells
  • 1 gamete produced / meiosis
  • Completion of meiosis delayed for months or years
  • Meiosis arrested at 1st meiotic prophase and reinitiated in a smaller population of cells
  • Differentiation of gamete occurs while diploid in first meiotic prophase
  • All chromosomes exhibit equivalent transcription and recombination during meiotic prophase

Male (spermatogenesis)

  • Meiosis initiated continuously in a mitotically dividing stem cell population
  • 4 gametes produced / meiosis
  • Meiosis completed in days or weeks
  • Meiosis and differentiation proceed continuously without cell cycle arrest
  • Differentiation of gamete occurs while haploid after meiosis ends

Sex chromosomes excluded from recombination and transcription during first meiotic prophase

Female Gametogenesis

In females, the total number of eggs ever to be produced are present in the newborn female.

  1. All eggs are arrested at an early stage of the first meiotic division as a primary oocyte (primordial follicle). Following purberty, during each menstrual cycle, pituitary gonadotrophin stimulates completion of meiosis 1 the day before ovulation.
  2. In meiosis 1, a diploid cell becomes 2 haploid (23 chromosomes) daughter cells, each chromosome has two chromatids. One cell becomes the secondary oocyte the other cell forms the first polar body.
  3. The secondary oocyte then commences meiosis 2 which arrests at metaphase and will not continue without fertilization.
  4. At fertilization meiosis 2 completes, forming a second polar body. Note that the first polar body may also undergo this process forming a third polar body.

Female gametogenesis


Polar Body

Human oocyte at metaphase II showing polar body at 12 o'clock position.

The breakdown of the germinal vesicle indicates a resumption of meiosis and the extrusion of the first polar body (1 PB) indicates completion of the first meiotic division in human oocytes. The polar body is a small cytoplasmic exclusion body formed to enclose the excess DNA formed during the oocyte (egg) meiosis and following sperm fertilization. There are 2-3 polar bodies derived from the oocyte present in the zygote, the number is dependent upon whether polar body 1 (the first polar body formed during meiosis 1) divides during meiosis 2. This exclusion body contains the excess DNA from the reductive division (the second and third polar bodies are formed from meiosis 2 at fertilization). These polar bodies do not contribute to the future genetic complement of the zygote, embryo or fetus.

Recent research in some species suggest that the space formed by the peripheral polar body (between the oocyte and the zona pellucia) can influence the site of spermatozoa fertilization.

Assisted reproductive techniques involving intracytoplasmic sperm injection (ICSI) have looked at the "quality" of the polar body and found that the morphology is related to mature oocyte viability and has the potential to predict oocyte fertilization rates and pregnancy achievement.[5][6]

Human Spermatozoa Development

  • Spermatogenesis process of spermatagonia mature into spermatazoa (sperm).
  • Continuously throughout life occurs in the seminiferous tubules in the male gonad- testis (plural testes).
  • At puberty spermatagonia activate and proliferate (mitosis).
  • about 48 days from entering meiosis until morphologically mature spermatozoa
  • about 64 days to complete spermatogenesis, depending reproduction time of spermatogonia
  • follicle stimulating hormone (FSH) - stimulates the spermatogenic epithelium
  • luteinizing-hormone (LH) - stimulates testosterone production by Leydig cells

Human-spermatozoa EM01.jpg

Spermatozoa animation icon.jpg Mature human spermatozoa
  • 60 µm long, actively motile
  • divided into 3 main regions (head, neck and tail)
  • head - (flattened, 5 µm long by 3 µm wide) the nucleus and acrosome. Posterior part of nuclear membrane forms the basal plate.
  • neck - (1 µm) attached to basal plate, transverse oriented centriole, contains nine segmented columns of fibrous material, continue as outer dense fibres in tail.
  • tail - 3 parts a middle piece, principal piece and end piece
    • middle piece - (5 µm long) axonema and dense fibres surrounded by mitochondria
    • principal piece - (45 µm long) fibrous sheath interconnected by regularly spaced circumferential hoops
    • end piece - (5 µm long) axonema surrounded by small amount of cytoplasm and plasma membrane


Links: Spermatozoa Development

Puberty

  • In humans at puberty, hormonal and morphological changes occur within the gonad and other systems (secondary sex characteristics).
  • Within the testis the immature Sertoli cells cease to proliferate and differentiate.
  • Spermatogonium proliferate and spermatogenesis begins.
  • It takes about 70 days for cells to mature from the diploid spermatogonium to a primary spermatocyte.
  • This maturation occurs in waves along the seminiferous tubules.


Links: Puberty

Ejeculate

Azoospermia - Non-obstructive azoospermia (NOA) and Obstructive azoospermia (OA)
  • release of spermatozoa and accessory gland secretions from the male genital tract (3.5 ml)
  • 200-600 million sperm, by volume less than 10 % spermatozoa
  • Accessory Gland secretions - 60 % seminal vesicle, 30 % prostate and 10 % bulbourethral

Male Abnormalities

  • Oligospermia - (Low Sperm Count) less than 20 million sperm after 72 hour abstinence from sex
  • Azoospermia - (Absent Sperm) blockage of duct network
  • Immotile Cilia Syndrome - lack of sperm motility


Meiosis in Other Species

  • Sea urchin - oocytes complete meiosis before being shed.
  • Starfish - oocytes only complete meiosis upon hormonal stimulation.

Abnormalities

Meiotic Nondisjunction

  • Occurs when homologues fail to separate during meiotic division I or II
  • For example trisomy 21 (Down Syndrome) caused by an extra copy of chromosome 21


Links: trisomy 21 | Nondisjunction

Chromosomal Translocations

  • Philadelphia chromosome
  • Chronic myelogenous leukemia
    • Piece of Chr9 exchanged with Chr22 Generates truncated abl

Overstimulates cell production

References

  1. 1.0 1.1 <pubmed>24312673</pubmed>
  2. <pubmed>23610072</pubmed>
  3. <pubmed>20140225</pubmed>| PLoS One
  4. <pubmed>23152892</pubmed>| PLoS ONE
  5. <pubmed>10655316</pubmed>
  6. <pubmed>19960239</pubmed>| PMC2799563

Textbooks

Reviews

<pubmed></pubmed> <pubmed></pubmed> <pubmed>18981989</pubmed>

Articles

<pubmed></pubmed> <pubmed></pubmed> <pubmed></pubmed>

Search Pubmed

July 2010 "meiosis" All (18851) Review (2062) Free Full Text (6212)

Search Pubmed: meiosis

Additional Images

Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 28) Embryology Cell Division - Meiosis. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Cell_Division_-_Meiosis

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G