Cartilage Histology

From Embryology
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Embryology - 19 Mar 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Articular cartilage

Our adult skeleton forms from a larger number of developmental elements that are replaced and fuse. In development there are 2 separate signaling pathways for pattern formation and the formation of bone itself. Furthermore bone formation can be divided into 2 specific forms that occur in anatomically different regions. This practical class will describe the development and structure of bone and finish with a study of abnormalities associated with bone.

The image shown to the left shows a histological section through the developing lower limb at the level of a developing joint (knee), surrounding the developing bone is cartilage, skeletal muscles and connective tissue of the limb.

Lecture - Musculoskeletal Development and notes on Bone Development.


Musculoskeletal Links: Introduction | mesoderm | somitogenesis | limb | cartilage | bone | bone timeline | bone marrow | shoulder | pelvis | axial skeleton | skull | joint | skeletal muscle | muscle timeline | tendon | diaphragm | Lecture - Musculoskeletal | Lecture Movie | musculoskeletal abnormalities | limb abnormalities | developmental hip dysplasia | cartilage histology | bone histology | Skeletal Muscle Histology | Category:Musculoskeletal
Historic Embryology - Musculoskeletal  
1853 Bone | 1885 Sphenoid | 1902 - Pubo-femoral Region | Spinal Column and Back | Body Segmentation | Cranium | Body Wall, Ribs, and Sternum | Limbs | 1901 - Limbs | 1902 - Arm Development | 1906 Human Embryo Ossification | 1906 Lower limb Nerves and Muscle | 1907 - Muscular System | Skeleton and Limbs | 1908 Vertebra | 1908 Cervical Vertebra | 1909 Mandible | 1910 - Skeleton and Connective Tissues | Muscular System | Coelom and Diaphragm | 1913 Clavicle | 1920 Clavicle | 1921 - External body form | Connective tissues and skeletal | Muscular | Diaphragm | 1929 Rat Somite | 1932 Pelvis | 1940 Synovial Joints | 1943 Human Embryonic, Fetal and Circumnatal Skeleton | 1947 Joints | 1949 Cartilage and Bone | 1957 Chondrification Hands and Feet | 1968 Knee

Chondroblasts and Chondrocytes

Immature and mature cartilage forming cells located at articular cartilage regions.

Interstitial growth

  • Occurs mainly in immature cartilage.
  • Chondroblasts in existing cartilage divide and form small groups of cells (isogenous groups) which produce matrix to become separated from each other by a thin partition of matrix.

Appositional growth

  • Occurs also in mature cartilage.
  • Mesenchymal cells surrounding the cartilage in the deep part of the perichondrium (or the chondrogenic layer) differentiate into chondroblasts.

Cartilage Development

Endochondral bone.jpg

Endochondral ossification slides: Developing bone | Bone, Developing (LS, Femur) Cat H&E

Blue Histology - endochondral | Dev Biology - endochondral ossification | endochondral ossification animation

Endochondral ossification.jpg Endochondral ossification 2.jpg

Ossification endochondral 1c.jpg Articular cartilage.jpg


Bone Histology: Cartilage Histology | Histology Stains | Histology | cartilage | bone | bone timeline
Compact bone Compact canals | Compact lamellae | compact bone - low unstained | compact bone - high unstained | compact bone - high unstained | compact - low | compact - low | compact - med | compact - high |
Trabecular bone trabecular | lamellar | trabecular - overview HE | trabecular - low HE | trabecular - med HE
Endochondral ossification primary ossification | endochondral ossification
Intramembranous ossification intramembranous - VG low | intramembranous - VG high | intramembranous - HE low | intramembranous - HE high

Human Fetal Head (12 week)

Fetal head medial.jpg Fetal head lateral.jpg

Meckel.jpg

Fetal head section.jpg

Histology Stains

Alizarin Red

  • an anthraquinone derivative used to identify calcium in tissue sections
  • calcium forms an Alizarin Red S-calcium complex in a chelation process and the end product is also birefringent.
  • reaction can also identify magnesium, manganese, barium, strontium, and iron may interfere
    • these elements usually in too low concentration to interfere with the staining

H&E

  • acronym for hematoxylin and eosin stain
  • hematoxylin - basic dye which colors basophilic structures with blue-purple hue (nucleus, DNA, RNA)
  • eosin Y - acidic alcohol-based which colors eosinophilic structures bright pink (cytoplasm, extracellular matrix, protein)

H&Van Gieson

  • Van Gieson's Stain is a mixture of picric acid and acid fuchsin used for differential staining of collagen and other connective tissue.
    • Nuclei - stains brownish black to black
    • Collagen (fibrous connective tissue) - stains pink or deep red
    • Muscle, Cytoplasm, RBC and Fibrin - stains yellow


Links: Histology Stains

Historic Images

Other Textbooks

Search

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.


Terms

  • haematopoiesis (Greek, haima = "blood"; poiesis = "to make") the process of blood cell formation.
  • Howship's lacuna - (resorptive bay) the historic name for the shallow bay or cavity lying directly under an osteoclast. This is the site of bone matrix resorption.
  • lacuna - (Latin, lacuna = “ditch, gap” diminutive form of lacus = “lake”) lacunae is the plural, cavity in bone or cartilage for cell.
  • lamellar bone - the highly organized strong bone matrix deposited in concentric sheets with a low proportion of osteocytes. Many collagen fibers parallel to each other in the same layer.
  • osteon - (Haversian system) the functional unit of compact bone. Consists of a central canal (Haversian canal) surrounded by lamellar bone matrix within which osteocytes reside.
  • resorptive bay - (Howship's lacuna) the shallow bay or cavity lying directly under an osteoclast. This is the site of bone matrix resorption.
  • suture - in the skull a form of articulation where the contiguous margins of the bones are united by a thin layer of fibrous tissue.
  • woven bone - the first deposited weaker bone matrix with many osteocytes and a matrix disorganized structure. Replaced by lamellar bone. Seen in developing, healing and bone disease.


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link

Cite this page: Hill, M.A. (2024, March 19) Embryology Cartilage Histology. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Cartilage_Histology

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G