Cardiovascular System - Patent Ductus Arteriosus

From Embryology
Revision as of 22:17, 25 June 2014 by Z8600021 (talk | contribs)
Embryology - 18 Apr 2024    Facebook link Pinterest link Twitter link  Expand to Translate  
Google Translate - select your language from the list shown below (this will open a new external page)

العربية | català | 中文 | 中國傳統的 | français | Deutsche | עִברִית | हिंदी | bahasa Indonesia | italiano | 日本語 | 한국어 | မြန်မာ | Pilipino | Polskie | português | ਪੰਜਾਬੀ ਦੇ | Română | русский | Español | Swahili | Svensk | ไทย | Türkçe | اردو | ייִדיש | Tiếng Việt    These external translations are automated and may not be accurate. (More? About Translations)

Introduction

Patent Ductus Arteriosus

Patent ductus arteriosus (PDA), or Patent arterial duct (PAD), or common truncus, occurs commonly in preterm infants, and at approximately 1 in 2000 full term infants and more common in females (to male ratio is 2:1). Can also be associated with specific genetic defects, trisomy 21 and trisomy 18, and the Rubinstein-Taybi and CHARGE syndromes.

The opening is asymptomatic when the duct is small and can close spontaneously (by day three in 60% of normal term neonates), the remainder are ligated simply and with little risk, with transcatheter closure of the duct generally indicated in older children. The operation is always recommended even in the absence of cardiac failure and can often be deferred until early childhood.


Heart Abnormal: Tutorial Abnormalities | atrial septal defects | double outlet right ventricle | hypoplastic left heart | patent ductus arteriosus‎ | transposition of the great vessels | Tetralogy of Fallot | ventricular septal defects | coarctation of the aorta | Category ASD | Category PDA | Category ToF | Category VSD | ICD10 - Cardiovascular | ICD11


Cardiovascular Links: cardiovascular | Heart Tutorial | Lecture - Early Vascular | Lecture - Heart | Movies | 2016 Cardiac Review | heart | coronary circulation | heart valve | heart rate | Circulation | blood | blood vessel | blood vessel histology | heart histology | Lymphatic | ductus venosus | spleen | Stage 22 | cardiovascular abnormalities | OMIM | 2012 ECHO Meeting | Category:Cardiovascular
Historic Embryology - Cardiovascular 
1902 Vena cava inferior | 1905 Brain Blood Vessels | 1909 Cervical Veins | 1909 Dorsal aorta and umbilical veins | 1912 Heart | 1912 Human Heart | 1914 Earliest Blood-Vessels | 1915 Congenital Cardiac Disease | 1915 Dura Venous Sinuses | 1916 Blood cell origin | 1916 Pars Membranacea Septi | 1919 Lower Limb Arteries | 1921 Human Brain Vascular | 1921 Spleen | 1922 Aortic-Arch System | 1922 Pig Forelimb Arteries | 1922 Chicken Pulmonary | 1923 Head Subcutaneous Plexus | 1923 Ductus Venosus | 1925 Venous Development | 1927 Stage 11 Heart | 1928 Heart Blood Flow | 1935 Aorta | 1935 Venous valves | 1938 Pars Membranacea Septi | 1938 Foramen Ovale | 1939 Atrio-Ventricular Valves | 1940 Vena cava inferior | 1940 Early Hematopoiesis | 1941 Blood Formation | 1942 Truncus and Conus Partitioning | Ziegler Heart Models | 1951 Heart Movie | 1954 Week 9 Heart | 1957 Cranial venous system | 1959 Brain Arterial Anastomoses | Historic Embryology Papers | 2012 ECHO Meeting | 2016 Cardiac Review | Historic Disclaimer

Some Recent Findings

  • Cochrane Database - Ibuprofen for the treatment of patent ductus arteriosus in preterm and/or low birth weight infants[1] "Indomethacin is used as standard therapy to close a patent ductus arteriosus (PDA) but is associated with reduced blood flow to several organs. Ibuprofen, another cyclo-oxygenase inhibitor, may be as effective as indomethacin with fewer side effects. Twenty-seven studies are included in this review. ...Ibuprofen is as effective as indomethacin in closing a PDA and reduces the risk of NEC and transient renal insufficiency. Given the reduction in NEC ibuprofen currently appears to be the drug of choice. Oro-gastric administration of ibuprofen appears at least as effective as iv administration. Too few patients have been enrolled in studies assessing the effectiveness of a high dose of ibuprofen versus the standard dose and early versus expectant administration of ibuprofen to make recommendations. Studies are needed to evaluate the effect of ibuprofen compared with indomethacin treatment on longer-term outcomes in infants with PDA."
  • Treatment of patent ductus arteriosus with bidirectional flow in neonates[2] "We identified 20 neonates with bidirectional flow out of 317 cases in which medical closure of patent ductus arteriosus was attempted. There was no significant increase in overall complications due to closure of a bidirectional patent ductus arteriosus [40% (8/20)] versus ones with left to right shunting [38% (111/297) p=0.82]. Death occurred in 15% (3/20) with bidirectional PDA compared to 11% (34/297) in the left to right group, p=0.72."
More recent papers
Mark Hill.jpg
PubMed logo.gif

This table allows an automated computer search of the external PubMed database using the listed "Search term" text link.

  • This search now requires a manual link as the original PubMed extension has been disabled.
  • The displayed list of references do not reflect any editorial selection of material based on content or relevance.
  • References also appear on this list based upon the date of the actual page viewing.


References listed on the rest of the content page and the associated discussion page (listed under the publication year sub-headings) do include some editorial selection based upon both relevance and availability.

More? References | Discussion Page | Journal Searches | 2019 References | 2020 References

Search term: Patent Ductus Arteriosus

<pubmed limit=5>Patent Ductus Arteriosus</pubmed>

Images


Cardiovascular Abnormalities

Data shown as a percentage of all major abnormalities based upon published statistics using the same groupings as Congenital Malformations Australia 1981-1992 P. Lancaster and E. Pedisich ISSN 1321-8352.

Heart defects and preterm birth are the most common causes of neonatal and infant death. The long-term development of the heart combined with extensive remodelling and post-natal changes in circulation lead to an abundance of abnormalities associated with this system.

A UK study literature showed that preterm infants have more than twice as many cardiovascular malformations (5.1 / 1000 term infants and 12.5 / 1000 preterm infants) as do infants born at term and that 16% of all infants with cardiovascular malformations are preterm. (0.4% of live births occur at greater than 28 weeks of gestation, 0.9% at 28 to 31 weeks, and 6% at 32 to 36 weeks. Overall, 7.3% of live-born infants are preterm)[3]

"Baltimore-Washington Infant Study data on live-born cases and controls (1981-1989) was reanalyzed for potential environmental and genetic risk-factor associations in complete atrioventricular septal defects AVSD (n = 213), with separate comparisons to the atrial (n = 75) and the ventricular (n = 32) forms of partial AVSD. ...Maternal diabetes constituted a potentially preventable risk factor for the most severe, complete form of AVSD." [4]

In addition, there are in several congenital abnormalities that exist in adults (bicuspid aortic valve, mitral valve prolapse, and partial anomalous pulmonary venous connection) which may not be clinically recognized.

References

  1. <pubmed>23633310</pubmed>
  2. <pubmed>21402454</pubmed>
  3. <pubmed>16322141</pubmed>
  4. <pubmed>11241431</pubmed>

Reviews

<pubmed>21532100</pubmed>

Articles

<pubmed>21829408</pubmed> <pubmed>21532789</pubmed>

Search Pubmed

Search Pubmed: Patent Ductus Arteriosus

Search OMIM: Patent Ductus Arteriosus

External Links

External Links Notice - The dynamic nature of the internet may mean that some of these listed links may no longer function. If the link no longer works search the web with the link text or name. Links to any external commercial sites are provided for information purposes only and should never be considered an endorsement. UNSW Embryology is provided as an educational resource with no clinical information or commercial affiliation.

  • OMIM


Glossary Links

Glossary: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | Numbers | Symbols | Term Link



Cite this page: Hill, M.A. (2024, April 18) Embryology Cardiovascular System - Patent Ductus Arteriosus. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Cardiovascular_System_-_Patent_Ductus_Arteriosus

What Links Here?
© Dr Mark Hill 2024, UNSW Embryology ISBN: 978 0 7334 2609 4 - UNSW CRICOS Provider Code No. 00098G